30. A Note on the Abstract Cauchy-Kowalewski Theorem

By Kiyoshi Asano
Institute of Mathematics, Yoshida College, Kyoto University
(Communicated by Kôsaku Yosida, M. J. A., April 12, 1988)

The purpose of this note is to give a simplified proof and an extention of the nonlinear Cauchy-Kowalewski theorem established by Ovsjannikov [5], Nirenberg [3], Nishida [4] and Kano-Nishida [2] (Appendice). The formulation is generalized, and we need only the contraction mapping principle in the proofs. (See also [1] Appendix C.)

Let $\left\{X_{\rho} ; 0 \leq \rho \leq \rho_{0}\right\}$ be a Banach scale so that $X_{\rho} \subset X_{\rho^{\prime}}$ and $\left|\left.\right|_{\rho} \geq| |_{\rho^{\prime}}\right.$ for any $\rho_{0} \geq \rho \geq \rho^{\prime} \geq 0$, where $\left|\left.\right|_{\rho}\right.$ denotes the norm of X_{ρ}. Consider the equation (1)

$$
u(t)=F(t, u(\cdot)), \quad 0 \leq t \leq T
$$

To state the assumptions on F, we introduce some notations. Let $X_{\rho, t}$ be the space of continuous functions $f(s)$ of $s \in[0, t]$ with values in the Banach space X_{ρ}, which is equipped with the norm

$$
\begin{equation*}
|f|_{\rho, t}=\sup _{0 \leq s \leq t}|f(s)|_{\rho} . \tag{2}
\end{equation*}
$$

We also put $X_{\rho, t}(R)=\left\{f \in X_{\rho, t} ;|f|_{\rho, t} \leq R\right\}$.
We state the assumptions on F :
(F.1) There exist constants $R>0$ and $\gamma_{0}>0$ such that for any $u \in$ $X_{\rho, z}(R) F(t, u(\cdot))$ is an $X_{\rho^{\prime}}$-valued continuous function on [0, τ] if $0 \leq \rho^{\prime}<\rho \leq$ $\rho_{0}-\gamma_{0} \tau$.
(F.2) For $\rho^{\prime}<\rho(s) \leq \rho \leq \rho_{0}-\gamma_{0} \tau$ and $0<\tau \leq T, F$ satisfies the following inequality (3) for any $u, v \in X_{\rho, \tau}(R)$:

$$
\begin{align*}
& |F(t, u(\cdot))-F(t, v(\cdot))|_{\rho^{\prime}} \tag{3}\\
& \quad \leq \int_{0}^{t} C|u(s)-v(s)|_{\rho(s)} /\left(\rho(s)-\rho^{\prime}\right) d s
\end{align*}
$$

where C is a constant independent of $t, \tau, u, v, \rho, \rho(s)$ or ρ^{\prime}.
(F.3) For $0<\tau \leq T$ and $\rho \leq \rho_{0}-\gamma_{0} \tau, F(t, 0)$ is continuous in $X_{\rho, \tau}$ and satisfies

$$
\begin{equation*}
|F(t, 0)|_{\rho_{0}-r_{0}} \leq R_{0}<R . \tag{4}
\end{equation*}
$$

For later use we introduce two Banach spaces $Y_{\rho, r}$ and Z_{r} of X_{ρ}-valued continuous functions, by indicating the norms (the range of t being omitted without confusion) :

$$
\begin{align*}
& \|u\|_{\rho, r}=\sup _{t \geq 0}|u(t)|_{\rho-r t}, \tag{5}\\
& \|u\|_{r}=\sup _{0 \leq r t \leq \rho_{0}-\rho}|u(t)|_{\rho} \varphi\left(r t /\left(\rho_{0}-\rho\right)\right), \tag{6}
\end{align*}
$$

where $\varphi(t)=(1-t) e^{-t}$. By $Y_{\rho, r}(R)$ we denote the subset $\left\{f \in Y_{\rho, r} ;\|f\|_{\rho, r} \leq R\right\}$. Clearly we have the following :

$$
\begin{align*}
& \varphi(t) \text { is monotone decreasing in }[0,1], \tag{7}\\
& 1-\varphi(t)>t \quad \text { for } 0<t<1, \tag{8}
\end{align*}
$$

$$
\begin{array}{ll}
\varphi(s)-\varphi(t) \geq e^{-1}(t-s) & \text { for } 0 \leq s \leq t \leq 1, \\
\left\|\left\|_{r} \leq\right\|\right\|_{r^{\prime}} & \text { for } \gamma \geq \gamma^{\prime}>0, \tag{10}\\
\left\|\left\|_{r} \leq\right\|\right\|_{\rho_{0}, r} \leq\left(1-\gamma^{\prime} / \gamma\right)^{-1} e\| \|_{r^{\prime}} & \text { for } \gamma>\gamma^{\prime} .
\end{array}
$$

Theorem 1. Under the assumptions (F.1), (F.2) and (F.3) there is a constant $\gamma>\gamma_{0}$ such that there exists a unique solution of (1) in $Y_{\rho_{0}, r}(R) \cap$ $X_{\rho_{0}-r_{\tau, \tau}}$ for $\tau \in\left(0, \min \left\{T, \rho_{0} / \gamma\right\}\right]$.

Consider an equation of extended type:

$$
\begin{equation*}
u(t)=F(t, u(\cdot))+\int_{0}^{t} E(t, s) G(s, u(\cdot)) d s, \quad 0 \leq t \leq T \tag{12}
\end{equation*}
$$

We assume that F satisfies (F.1)-(F.3) and
(G.1) $G(t, u(\cdot))$ satisfies the same condition as (F.1),
(G.2) for $\rho^{\prime}<\rho(s) \leq \rho \leq \rho_{0}-\gamma_{0} t$ there holds

$$
\begin{align*}
& |G(t, u)-G(t, v)|_{\rho^{\prime}} \tag{13}\\
& \quad \leq B|u(t)-v(t)|_{\rho} /\left(\rho-\rho^{\prime}\right)+B^{\prime} \int_{0}^{t}|u(s)-v(s)|_{\rho(s)} /\left(\rho(s)-\rho^{\prime}\right) d s,
\end{align*}
$$

where B and B^{\prime} are independent of $t, \tau, u, v, \rho, \rho(s)$ or ρ^{\prime},
(G.3) for $0<\tau \leq T$ and $\rho \leq \rho_{0}-\gamma_{0} \tau, G(t, 0)$ is continuous in $X_{\rho, \tau}$ and satisfies
(14)

$$
|G(t, 0)|_{\rho_{0}-r_{0} t} \leq R_{1} .
$$

We also assume the linear operator $E(t, s)$ satisfies :
(E) For any $u \in X_{\rho} E(t, s) u$ is continuous on $\Delta_{T}=\{(t, s): 0 \leq s \leq t \leq T\}$ with values in $X_{\rho^{\prime}}$ if $\rho^{\prime} \leq \rho-\beta(t-s)$ with some $\beta \geq 0$ and $\rho<\rho_{0}-\gamma_{0} t$, and there holds
(15)

$$
|E(t, s) u|_{\rho-\beta(t-s)} \leq A|u|_{\rho},
$$

where the constant A does not depend on t, s, ρ or ρ^{\prime}.
Theorem 2. Under the assumptions (F.1)-(F.3), (G.1)-(G.3) and (E) there exists a $\gamma>\max \left(\gamma_{0}, \beta e\right)$ such that there is a unique solution $u(t)$ of (12) in $Y_{\rho_{0}, r}(R) \cap X_{\rho_{0}-r_{2}, \tau}(R)$ for any $\tau, 0<\tau \leq \min \left(T, \rho_{0} / \gamma\right)$.

Proof of Theorem 1. We define a mapping H from $Z_{r} \cap X_{\rho, \tau}(R)$ into Z_{r} by

$$
\begin{equation*}
H u(t)=F(t, u(\cdot)) . \tag{16}
\end{equation*}
$$

Then we have

$$
\begin{align*}
|H u(t)-H v(t)|_{\rho} & =|F(t, u(\cdot))-F(t, v(\cdot))|_{\rho} \tag{17}\\
& \leq \int_{0}^{t} C|u(s)-v(s)|_{\rho(s)}(\rho(s)-\rho)^{-1} d s \\
& \leq C\|u-v\|_{r} \int_{0}^{t} \varphi\left(\gamma s /\left(\rho_{0}-\rho(s)\right)\right)^{-1}(\rho(s)-\rho)^{-1} d s .
\end{align*}
$$

We determine $\rho(s)$ by
(18)

$$
\rho(s)-\rho=\left(\rho_{0}-\rho\right) \varphi\left(\gamma s /\left(\rho_{0}-\rho\right)\right) .
$$

We can take this $\rho(s)$, since (18) implies

$$
\begin{align*}
\rho_{0}-\rho(s) & =\left(\rho_{0}-\rho\right)\left\{1-\varphi\left(\gamma s /\left(\rho_{0}-\rho\right)\right)\right\} \tag{19}\\
& >\left(\rho_{0}-\rho\right)\left\{\gamma s /\left(\rho_{0}-\rho\right)\right\}=\gamma s .
\end{align*}
$$

Calculating the integrand of (17), we obtain

$$
\begin{aligned}
& \varphi\left(\gamma s /\left(\rho_{0}-\rho(s)\right)\right)^{-1}\left(\rho_{0}-\rho(s)\right)^{-1} \\
& \quad \leq 2 e\left(\rho_{0}-\rho\right)\left(\rho_{0}-\rho-\gamma s\right)^{-2} e^{\tau s /\left(\rho_{0}-\rho\right)}
\end{aligned}
$$

Here we have used the equality : $1-e^{-x}=x e^{-\theta x}, 0<\theta<1$, with $x=\gamma s /\left(\rho_{0}-\rho\right)$. Hence we have

$$
\begin{aligned}
|H u(t)-H v(t)|_{\rho} e^{-\tau t /\left(\rho_{0}-\rho\right)} & \leq C\|u-v\|_{r} \int_{0}^{t} 2 e\left(\rho_{0}-\rho\right)\left(\rho_{0}-\rho-\gamma s\right)^{-2} d s \\
& \leq 2 C e\|u-v\|_{r}\left(\rho_{0}-\rho\right) \gamma^{-1}\left(\rho_{0}-\rho-\gamma t\right)^{-1}
\end{aligned}
$$

This implies

$$
\begin{equation*}
\|H u-H v\|_{r} \leq(2 C e / r)\|u-v\|_{r} . \tag{20}
\end{equation*}
$$

We choose γ satisfying
(21)

$$
r \geq \max \left(4 \gamma_{0} / 3,8 C e\right)
$$

Then we define an approximating sequence $u_{n}(t)$ and an associated sequence γ_{n} by

$$
\begin{align*}
& u_{0}=F(t, 0), \quad u_{n+1}=H u_{n} \quad(n \geq 1), \tag{22}\\
& \gamma_{n}=\gamma\left(1-2^{-1-n}\right), \quad \text { i.e. } \quad \gamma-\gamma_{n}=\gamma 2^{-n-1}, \tag{23}
\end{align*}
$$

Clearly it follows (cf. (10) and (11))

$$
\begin{align*}
\left\|u_{n+1}-u_{n}\right\|_{r_{n}} & \leq\left(2 C e / \gamma_{n}\right)\left\|u_{n}-u_{n-1}\right\|_{r_{n}} \tag{24}\\
\left\|u_{n+1}-u_{n}\right\|_{\rho_{0}, r} & \leq\left(1-\gamma_{n} / \gamma\right)^{-1} e\left\|u_{n+1}-u_{n}\right\|_{r_{n}} \tag{25}\\
& =2^{n+1} e\left\|u_{n+1}-u_{n}\right\|_{r_{n}} .
\end{align*}
$$

These imply

$$
\begin{align*}
&\left\|u_{n+1}-u_{n}\right\|_{\rho_{0}, r} \leq 2^{n+1} e(2 C e)^{n} \gamma_{n}^{-n}\left\|u_{1}-u_{0}\right\|_{r_{n}} \tag{26}\\
& \leq 8 / 3 e(4 C e / \gamma)^{n}\left\|u_{1}-u_{0}\right\|_{r_{1}} .
\end{align*}
$$

The assumptions (F.2) and (F.3) imply

$$
\begin{equation*}
\left\|u_{1}-u_{0}\right\|_{r_{1}}=\left\|F\left(\cdot, u_{0}\right)-F(\cdot, 0)\right\|_{r_{1}} \leq\left(2 C e / \gamma_{1}\right)\left\|u_{0}\right\|_{r_{1}} \tag{27}
\end{equation*}
$$

Hence we have

$$
\begin{aligned}
& \left\|u_{n+1}-u_{n}\right\|_{\rho_{0}, r} \leq 16 / 9 e(4 C e / \gamma)^{n+1} R_{0}, \\
& \left\|u_{n+1}\right\|_{\rho, \gamma}\{1+4 e(4 C e / \gamma)\} R_{0} .
\end{aligned}
$$

If we choose γ satisfying (21) and
(31)

$$
\begin{equation*}
\gamma \geq 16 C e^{2} R_{0} /\left(R-R_{0}\right) \tag{30}
\end{equation*}
$$

then we obtain

$$
\begin{equation*}
\left\|u_{n}\right\|_{\rho, r} \leq R, \quad n \geq 0 \tag{32}
\end{equation*}
$$

which shows $u_{n} \in Y_{\rho_{0}, r}(R)$, i.e. $u_{n}(t) \in X_{\rho_{0}-r_{t, 2}}(R)$. Thus $H u_{n}$ is well-defined. The estimate (29) also implies that $u_{n}(t)$ converges in $Y_{\rho_{0}, r}(R)$ and in $X_{\rho_{0}-\tau t, \tau}(R)$. The limit $u(t)$ is a solution of (1). The uniqueness of the solution in $Y_{\rho, r}\left(\rho \leq \rho_{0}\right)$ is obtained from (20).

We note that the estimate of γ is given by
($\Gamma .1$) $\quad \gamma=\max \left\{4 \gamma_{0} / 3,8 C e, 16 C e^{2} R_{0} /\left(R-R_{0}\right)\right\}$.
Proof of Theorem 2. We define mappings K and L from $Z_{r} \cap X_{\rho, z}(R)$ into Z_{r} by

$$
\begin{equation*}
K u(t)=\int_{0}^{t} E(t, s) G(s, u(\cdot)) d s, \quad L u=H u+K u \tag{33}
\end{equation*}
$$

Then from (G.1)-(G.2) and (E), we have

$$
\begin{align*}
|K u(t)-K v(t)|_{\rho} \leq & \int_{0}^{t} A B|u(s)-v(s)|_{\rho(s)}\{\rho(s)-(\rho+\beta(t-s))\}^{-1} d s \tag{34}\\
& +\int_{0}^{t} d s \int_{0}^{s} A B^{\prime}|u(r)-v(r)|_{\rho(r)}\{\rho(r)-(\rho+\beta(t-s))\}^{-1} d s
\end{align*}
$$

We determine $\rho(s)$ by (18). From (9) we have with $\gamma \geq 2 \beta e$

$$
\begin{gather*}
\rho(r)-\rho \geq\left(\rho_{0}-\rho\right)\left\{\varphi\left(\gamma r /\left(\rho_{0}-\rho\right)\right)-\varphi\left(\gamma t /\left(\rho_{0}-\rho\right)\right)\right\} \tag{37}\\
\geq\left(\rho_{0}-\rho\right) e^{-1 \gamma} \gamma(t-r) /\left(\rho_{0}-\rho\right) \geq 2 \beta(t-r), \\
\rho(r)-(\rho+\beta(t-r)) \geq(1 / 2)\{\rho(r)-\rho\} .
\end{gather*}
$$

(38)

Thus the same calculations as those from (19) to (20) give
(39) $\quad\|K u-K v\|_{r} \leq(2 A e / \gamma)\|u-v\|_{r}\left(B+B^{\prime} \tau\right)$, $\quad\left(\gamma \tau \geq \rho_{0}\right)$,
(40)

$$
\|L u-L v\|_{r} \leq\left\{2\left(C+A B+A B^{\prime} \tau_{0}\right) e / \gamma\right\}\|u-v\|_{r}
$$

We choose τ_{0} and γ satisfying
(Г.2) $\quad \gamma \geq \max \left\{4 \gamma_{0} / 3,8 D e, 2 \beta e, \rho_{0} / \tau_{0}, 16 D e^{2} R_{2} /\left(R-R_{2}\right)\right\}$,

$$
R_{2}=R_{0}+A R_{1} \tau_{0}<R, \quad D=C+A B+A B^{\prime} \tau_{0}
$$

Then, we can complete the proof.

References

[1] R. Caflisch and O. Orellana: C. P. A. M., 39, 807-838 (1986).
[2] T. Kano and T. Nishida: J. Math. Kyoto Univ., 19, 335-370 (1979).
[3] L. Nirenberg: J. Diff. Geometry, 6, 561-576 (1972).
[4] T. Nishida: ibid., 12, 629-633 (1977).
[5] L. V. Ovsjannikov: Dokl. Akad. Nauk. SSSR, 200, 1497-1502 (1971).

