23. On Traces of Hecke Operators on the Spaces of Cusp Forms of Half-integral Weight

By Masaru Ueda
Department of Mathematics, Faculty of Science, Kyoto University
(Communicated by Shokichi Iyanaga, m. J. A., March 12, 1987)

The space of cusp forms of half-integral weight, besides the space of those of integral weight, and Hecke operators on these spaces are wellknown objects of arithmetical study of automorphic forms. After S. Niwa [2] had given some explicit relations between traces of these operators, W. Kohnen [1] gave further relation of similar type. In this paper, we shall give more general relations including these results. Details will appear in [3].

Preliminaries.
(a) General notations. Let k be a positive integer. If $z \in \boldsymbol{C}$ and $x \in C$, we put $z^{x}=\exp (x \cdot \log (z))$ with $\log (z)=\log (|z|)+\sqrt{-1} \arg (z), \arg (z)$ being determined by $-\pi<\arg (z) \leq \pi$. For $z \in C$, we put

$$
e(z)=\exp (2 \pi \sqrt{-1} z)
$$

Let \mathfrak{F} be the complex upper half plane. For a complex-valued function $f(z)$ on $\mathfrak{S}, \alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L_{2}^{+}(\boldsymbol{R}), \gamma=\left(\begin{array}{ll}u & v \\ w & x\end{array}\right) \in \Gamma_{0}(4)$ and $z \in \mathscr{S}_{c}$, we define functions $J(\alpha, z), j(\gamma, z)$ and $f \mid[\alpha]_{k}(z)$ on \mathscr{S} by : $J(\alpha, z)=c z+d, j(\gamma, z)=\left(\frac{-1}{x}\right)^{-1 / 2}$ $\times\left(\frac{w}{x}\right)(w z+x)^{1 / 2}$ and $f \mid[\alpha]_{k}(z)=(\operatorname{det} \alpha)^{k / 2} J(\alpha, z)^{-k} f(\alpha z)$.
(b) Modular forms of integral weight. Let N be a positive integer. By $S(2 k, N)$, we denote the space of all holomorphic cusp forms of weight $2 k$ with the trivial character on the group $\Gamma=\Gamma_{0}(N)$.

Let $\alpha \in G L_{2}^{+}(\boldsymbol{R})$. If Γ and $\alpha^{-1} \Gamma \alpha$ are commensurable, we define a linear operator $[\Gamma \alpha \Gamma]_{2 k}$ on $S(2 k, N)$ by :

$$
f\left|[\Gamma \alpha \Gamma]_{2 k}=(\operatorname{det} \alpha)^{k-1} \sum_{\alpha_{i}} f\right|\left[\alpha_{i}\right]_{2 k},
$$

where α_{i} runs over a system of representatives for $\Gamma \backslash \Gamma \alpha \Gamma$.
For a natural number n with $(n, N)=1$, we put

$$
T_{2 k, N}(n)=\sum_{a d=n}\left[\Gamma\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \Gamma\right]_{2 k},
$$

where the sum is extended over all pairs of integers (a, d) such that $a, d>0$, $a \mid d$ and $a d=n$. Moreover, let L_{0} be a positive divisor of N such that (L_{0}, $\left.N / L_{0}\right)=1$ and that $L_{0} \neq 1$. Take any element $\gamma\left(L_{0}\right) \in S L_{2}(Z)$ which satisfies the conditions:

$$
r\left(L_{0}\right) \equiv\left\{\begin{array}{lc}
\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) & \left(\bmod L_{0}\right) \\
\left(\begin{array}{rr}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\bmod N / L_{0}\right)
\end{array}\right.
$$

Put $W\left(L_{0}\right)=\gamma\left(L_{0}\right)\left(\begin{array}{ll}L_{0} & 0 \\ 0 & 1\end{array}\right)$. Then, $W\left(L_{0}\right)$ is a normalizer of Γ and $\left[W\left(L_{0}\right)\right]_{2 k}$ induces a C-linear automorphism of order 2 on $S(2 k, N)$.
(c) Modular forms of half-integral weight. Let N be a positive integer divisible by 4 and χ an even character modulo N such that $\chi^{2}=1$. Put $\mu=\operatorname{ord}_{2}(N), M=2^{-\mu} N$ and $\Gamma=\Gamma_{0}(N)$.

Let $G(k+(1 / 2))$ be the group consisting of pairs (α, φ), where $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ $\in G L_{2}^{+}(\boldsymbol{R})$ and φ is a holomorphic function on $\mathscr{S}_{\mathcal{S}}$ satisfying

$$
\varphi(z)=t(\operatorname{det} \alpha)^{-k / 2-1 / 4} J(\alpha, z)^{k+1 / 2}
$$

with $t \in C$ and $|t|=1$. The group law is defined by :

$$
(\alpha, \varphi(z)) \cdot(\beta, \psi(z))=(\alpha \beta, \varphi(\beta z) \psi(z)) .
$$

For a complex-valued function f on \mathscr{F} and $(\alpha, \varphi) \in G(k+(1 / 2))$, we define a function $f \mid(\alpha, \varphi)$ on $\mathscr{F}_{\mathcal{L}}$ by : $f \mid(\alpha, \varphi)(z)=\varphi(z)^{-1} f(\alpha z)$. By $\Delta=\Delta_{0}(N, \chi)_{k+1 / 2}$, we denote a subgroup of $G(k+(1 / 2))$ consisting of all pairs (γ, φ), where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\gamma$ $\in \Gamma$ and $\varphi(z)=\chi(d) j(\gamma, z)^{2 k+1}$. We denote by $S(k+(1 / 2), N, \chi)$ the space of all complex-valued holomorphic functions f on \mathscr{S} which satisfies $f \mid \xi=f$ for all $\xi \in \Delta$ and which is holomorphic and vanishes at all cusps of Γ. When $\mu=2$, we define the Kohnen subspace $S(k+(1 / 2), N, \chi)_{K}$ by :

$$
S\left(k+\frac{1}{2}, N, \chi\right)_{K}=\left\{\begin{array}{l}
S\left(k+\frac{1}{2}, N, \chi\right) \ni f(z)=\sum_{n=1}^{\infty} a(n) e(n z) ; \\
a(n)=0 \text { for } \varepsilon(-1)^{k} n \equiv 2,3(\bmod 4)
\end{array}\right\}
$$

Here, the constant ε is defined as follows: From the assumptions $\mu=2$ and $\chi^{2}=1$, we can express $\chi=\left(\frac{M_{0}}{}\right)$. Then, we put $\varepsilon=\left(\frac{-1}{M_{0}}\right)$.

Let $\xi \in G(k+(1 / 2))$. If Δ and $\xi^{-1} \Delta \xi$ are commensurable, we define a linear operator $[\Delta \xi \Delta]_{k+1 / 2}$ on $S(k+(1 / 2), N, \chi)$ by :

$$
f\left|[\Delta \xi \Delta]_{k+1 / 2}=\sum_{\eta} f\right| \eta
$$

where η runs over a system of representatives for $\Delta \backslash \Delta \xi \Delta$. Then, for a natural number n with (n, N) $=1$, we put

$$
\tilde{T}_{k+1 / 2, N, \mathrm{x}}\left(n^{2}\right)=n^{k-3 / 2} \sum_{a d=n} a\left[\Delta\left(\left(\begin{array}{cc}
a^{2} & 0 \\
0 & d^{2}
\end{array}\right),(d / a)^{k+1 / 2}\right) \Delta\right]_{k+1 / 2},
$$

where the sum is extended over all pairs of integers (a, d) such that $a, d>0$, $a \mid d$ and $a d=n$. Then, the Kohnen subspace $S(k+(1 / 2), N, \chi)_{K}$ is invariant under the action of $\tilde{T}_{k+1 / 2, N, \mathrm{x}}\left(n^{2}\right)$. Hence, we can consider the trace of $\tilde{T}_{k+1 / 2, N, \chi}\left(n^{2}\right)$ on $S(k+(1 / 2), N, \chi)_{K}$.

Statement of results. Under the above notations, we have the following relations between traces.

Theorem. Let N be a positive integer such that $2 \leq \operatorname{ord}_{2}(N)=\mu \leq 4$, and put $M=2^{-\mu} N$. Let χ be an even character modulo N such that $\chi^{2}=1$ and suppose that the conductor of χ is divisible by 8 if $\mu=4$. Then, we have the following relations (1.1)-(1.2):
(1.1) Suppose $k \geq 2$, then, for positive integers n with $(n, N)=1$, we have:

$$
\begin{aligned}
& \operatorname{trace}\left(\tilde{T}_{k+1 / 2, N, x}\left(n^{2}\right) \mid S(k+(1 / 2), N, \chi)\right) \\
& \quad=\operatorname{trace}\left(T_{2 k, N / 2}(n) \mid S(2 k, N / 2)\right) \\
& \quad+\sum_{1} \Lambda\left(n, L_{0}\right) \operatorname{trace}\left(\left[W\left(L_{0}\right)\right]_{2 k} T_{2 k, 2^{\mu-1} L_{0} L_{1}}(n) \mid S\left(2 k, 2^{\mu-1} L_{0} L_{1}\right)\right)
\end{aligned}
$$

(1.2) Let k and n be the same as in (1.1) and suppose $\mu=2$. Then, we have:

$$
\begin{aligned}
& \operatorname{trace}\left(\tilde{T}_{k+1 / 2, N, x}\left(n^{2}\right) \mid S(k+(1 / 2), N, \chi)_{K}\right) \\
& \quad=\operatorname{trace}\left(T_{2 k, M}(n) \mid S(2 k, M)\right) \\
& \quad+\sum_{1} \Lambda\left(n, L_{0}\right) \operatorname{trace}\left(\left[W\left(L_{0}\right)\right]_{2 k} T_{2 k, L_{0} L_{1}}(n) \mid S\left(2 k, L_{0} L_{1}\right)\right)
\end{aligned}
$$

Here, L_{0} in the sum \sum_{1} runs over all square integers such that $1<L_{0} \mid M$. Put $L_{1}=M \prod_{p \mid L_{0}} p^{-\operatorname{ord}_{p}(M)}$. The constant $\Lambda\left(n, L_{0}\right)$ is defined as follows:

$$
\Lambda\left(n, L_{0}\right)=\prod_{p \mid M} \lambda\left(p, n ;\left(\operatorname{ord}_{p}\left(L_{0}\right)\right) / 2\right)
$$

with

$$
\lambda(p, n ; a)=\left\{\begin{array}{l}
1, \text { if } a=0 \\
1+\left(\frac{-n}{p}\right), \text { if } 1 \leq a \leq[(\nu-1) / 2] \\
\chi_{p}(-n), \text { if } \nu \text { is even and } a=\nu / 2
\end{array}\right.
$$

where $\nu=\operatorname{ord}_{p}(N)$ and χ_{p} is the p-component of χ.
Remark. For the case $k=1$, we have also some similar relations (cf. [3] § 3 Theorem).

Supplementary remarks. When N and χ are the same as in the Preliminaries (c), the explicit formulas for traces of the operator $\tilde{T}_{k+1 / 2, N, x}\left(n^{2}\right)$ on $S(k+(1 / 2), N, \chi)$ and $S(k+(1 / 2), N, \chi)_{K}$ are given in [3] § 1 and $\S 2$. However, for the other cases than the above Theorem, no relation is found yet. Finally, by using the above Theorem, we can give the decompositions to the eigen subspaces of $S(k+(1 / 2), N, \chi)$ and $S(k+(1 / 2), N, \chi)_{K}$ in several cases.

References

[1] W. Kohnen: Newforms of half-integral weight. J. reine und angew. Math., band 333, 32-72 (1982).
[2] S. Niwa: On Shimura's trace formula. Nagoya Math. J., 66, 183-202 (1977).
[3] M. Ueda: The decomposition of the spaces of cusp forms of half-integral weight and trace formula of Hecke operators (to appear in J. Math. Kyoto Univ.).

