21. On Siegel Series for Hermitian Forms

By Shōyū Nagaoka
Department of Mathematics, Kinki University
(Communicated by Shokichi Iyanaga, m. J. a., March 12, 1987)

Let K be an imaginary quadratic number field of discriminant d_{K} with ring of integers o_{K}. We let $\Omega_{n}(K)$ denote the set of hermitian matrices in $M_{n}(K)$ and put $\Omega_{n}\left(o_{K}\right)=\Omega_{n}(K) \cap M_{n}\left(o_{K}\right)$. An element $H=\left(h_{i j}\right) \in \Omega_{n}(K)$ is called semi-integral if $\mathrm{h}_{k k} \in Z$ and $\sqrt{\overline{d_{K}}} h_{i j} \in o_{K}(i \neq j)$. Denote by $\Lambda_{n}(K)$ the set of semi-integral matrices in $\Omega_{n}(K)$. For an element H in $\Lambda_{n}(K)$, we define a singular series by

$$
b(s, H)=\sum_{R} \nu(R)^{-s} \exp [2 \pi i t r(H R)], \quad s \in C,
$$

where R runs over all hermitian matrices $\bmod \Omega_{n}\left(o_{K}\right)$ and $\nu(R)$ denotes the determinant of the denominator of R (cf. [1]). If $\operatorname{Re}(s)>2 n$, then the series is absolutely convergent. In the case of quadratic forms, this series was studied by Siegel [6], Kaufhold [2], Shimura [5] and Kitaoka [3]. The purpose of this note is to give an explicit formula for the series $b(s, H)$ under a certain condition.

In the rest of this note, we assume that the class number of K is 1 and $n=2$. For each hermitian matrix R in $M_{2}(K)$, we have a unique decomposition $R \equiv \sum R_{p} \bmod \Omega_{2}\left(o_{K}\right)$ where R_{p} is a hermitian matrix in $M_{2}(K)$ such that $\nu\left(R_{p}\right)$ is a power of rational prime p. Therefore we have a decomposition

$$
\begin{aligned}
& b(s, H)=\prod_{p} b_{p}(s, H), \\
& b_{p}(s, H)=\sum_{R_{p}} \nu\left(R_{p}\right)^{-s} \exp \left[2 \pi i t r\left(H R_{p}\right)\right],
\end{aligned}
$$

where R_{p} runs over all hermitian matrices $\bmod \Omega_{2}\left(o_{K}\right)$ such that $\nu\left(R_{p}\right)$ is a power of rational prime p. Thus our problem is reduced to finding a formula for $b_{p}(s, H)$. The series $b_{p}(s, H)$ was studied by Shimura in [5] under the general situation and is called Siegel series associated with H.

We fix a rational prime p. For each non-zero matrix H in $\Lambda_{2}(K)$, and put $d_{1}(H)=\max \left\{m \in Z \mid m^{-1} H \in \Lambda_{2}(K)\right\}$ and $p^{\alpha(H)} \| d_{1}(H)$. When H is nonsingular we determine the integers $a(H), d(H)$ and $d_{p}(H)$ by $p^{a(H)} \| d(H)$ $=\left|\sqrt{d_{K}} H\right|$ (the determinant of $\left.\sqrt{d_{K}} H\right), d(H)=p^{a(H)} d_{p}(H)$. We note that $a(H) \geqq 2 \alpha(H) \geqq 0$.

The first result can be stated as follows.
Theorem 1. Let H be a non-zero matrix in $\Lambda_{2}(K)$ and $\chi(\cdot)$ denote the Kronecker symbol of K.
(1)

$$
\begin{aligned}
& \text { If }|H| \neq 0 \text {, then } \\
& \qquad b_{p}(s, H)=\left(1-p^{-s}\right)\left(1-\chi(p) p^{1-s}\right) F_{p}(s, H),
\end{aligned}
$$

where

$$
F_{p}(s, H)= \begin{cases}\sum_{l=0}^{\alpha} p^{l(3-s)}\left\{\sum_{m=0}^{[a / 2]-l} p^{m(4-2 s)}+\chi(p) p^{2-s} \sum_{m=0}^{[(a-1) / 2]-l} p^{m(4-2 s)}\right\} \\ \sum_{l=0}^{\alpha} p^{l(3-s)}\left\{1+\chi\left(d_{p}\right)\left(1-\chi^{2}\left(d / p^{2 l}\right)\right) p^{(a-2 l)(2-s)}\right\} & \text { if } \chi(p) \neq 0, \\ \text { if } \chi(p)=0 .\end{cases}
$$

(2) If $|H|=0$, then

$$
b_{p}(s, H)=\left(1-p^{-s}\right)\left(1-\chi(p) p^{1-s}\right)\left(1-\chi(p) p^{2-s}\right)^{-1} F_{p}(s, H),
$$

where

$$
F_{p}(s, H)=\sum_{l=0}^{\alpha} p^{l(3-s)}
$$

Here $[x]$ is the largest integer $\leqq x$. For simplicity we put $\alpha=\alpha(H), a=\alpha(H)$, $d=d(H)$ and $d_{p}=d_{p}(H)$.

Remark. When $H=0^{(2)}$ (the zero matrix of degree 2) we have

$$
b_{p}\left(s, 0^{(2)}\right)=\left(1-p^{-s}\right)\left(1-\chi(p) p^{1-s}\right)\left(1-\chi(p) p^{2-s}\right)^{-1}\left(1-p^{3-s}\right)^{-1}
$$

for any prime p. The general formula for $b_{p}\left(s, 0^{(n)}\right)$ has been obtained in [5].

Corollary. Let H and $\chi(\cdot)$ be as in Theorem. If we put

$$
F(s, H)=\left\{\begin{array}{lc}
\prod_{p \mid d} F_{p}(s, H) & \text { if }|H| \neq 0 \\
\prod_{p \mid d_{1}} F_{p}(s, H) & \text { if }|H|=0
\end{array}\right.
$$

then we have

$$
b(s, H)= \begin{cases}\zeta(s)^{-1} L(s-1, \chi)^{-1} F(s, H) & \text { if }|H| \neq 0 \\ \zeta(s)^{-1} L(s-1, \chi)^{-1} L(s-2, \chi) F(s, H) \quad \text { if }|H|=0,\end{cases}
$$

where $\zeta(s)$ is the Riemann zeta function and $L(s, \chi)$ is the Dirichlet L function attached to χ and $d_{1}=d_{1}(H)$. Furthermore $F(s, H)$ can be continued as a holomorphic function in s to the whole C and satisfies

$$
F(s, H)=\left\{\begin{array}{l}
\varepsilon(H)|d|^{2-s} F(4-s, H) \quad \text { if }|H| \neq 0 \\
d_{1}^{3-s} F(6-s, H) \quad \text { if }|H|=0,
\end{array}\right.
$$

where $\varepsilon(H)=\operatorname{sgn}(d)=\operatorname{sgn}(-|H|)$.
Now we denote by H_{n} the hermitian upper-half space of degree n. For each Z in H_{n}, we put $I(Z)=(2 i)^{-1}\left(Z-{ }^{t} \bar{Z}\right)$. Then $I(Z)$ is a positive hermitian matrix. Following to Kaufhold [2], we consider a Dirichlet series $\phi^{(2)}(Z, s)$ corresponding to the hermitian modular group of degree 2 defined by

$$
\phi^{(2)}(Z, s)=|I(Z)|^{s / 2} \sum_{\{c, D\}}\|C Z+D\|^{-s}, \quad(Z, s) \in H_{2} \times C
$$

Generalized hypergeometric functions have been studied by Shimura in [4]. If we combine his results and the above corollary, we obtain the following theorem.

Theorem 2. We define

$$
\rho(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s), \rho_{\chi}(s)=\left|d_{K}\right|^{s / 2} \pi^{-s / 2} \Gamma((s+1) / 2) L(s, \chi),
$$

where $\Gamma(s)$ is the ordinary gamma function. If we put

$$
\xi(s)=\rho(s) \rho_{\chi}(s-1) \phi^{(2)}(Z, s)
$$

then ξ can be continued as a meromorphic function in s to the whole C and satisfies

$$
\xi(s)=\xi(4-s) .
$$

Remark. From Theorem 1 we can derive a formula for Fourier coefficients of holomorphic Eisenstein series for the hermitian modular group of degree 2 .

References

[1] H. Braun: Hermitian modular functions, Part 1. Ann. of Math., 50, 827-855 (1949).
[2] G. Kaufhold: Dirichletsche Reihe mit Funktionalgleichung in der Theorie der Modulfunktion 2. Grades. Math. Ann., 137, 454-476 (1959).
[3] Y. Kitaoka: Dirichlet series in the theory of Siegel modular forms. Nagoya Math. J., 95, 73-84 (1984).
[4] G. Shimura: Confluent hypergeometric functions on tube domains. Math. Ann., 260, 269-302 (1982).
[5] -_: On Eisenstein series. Duke Math. J., 50, 417-476 (1983).
[6] C. L. Siegel: Einführung in die Theorie der Modulfuktionen n-ten Grades. Math. Ann., 116, 617-657 (1939).

