114. Dual Pairs on Spinors

Cases of ($\mathrm{C}_{m}, \mathrm{C}_{n}$) and ($\left.\mathrm{C}_{m}^{(1)}, \mathrm{C}_{n}^{(1)}\right)$
By Kohji Hasegawa
Department of Mathematics, Nagoya University
(Communicated by Kunihiko Kodaira, m. J. A., Dec. 14, 1987)
§0. Introduction. Weyl's reciprocity theorem says that the symmetric group \mathbb{S}_{m} and the general linear group $\operatorname{GL}(n, C)$ are mutually commutant (i.e. (\mathcal{S}_{m}, GL (n, C) forms a dual pair [3]) on the tensor space ($\left.C^{n}\right)^{\otimes m}$. The purpose of this paper is to give the spinor analogues of this theorem: we claim ($\mathfrak{j p}(2 m)$, $\mathfrak{j p}(2 n)$) forms a dual pair on the $\mathfrak{o}(4 m n)$-module $\wedge\left(C^{2 m n}\right)$, and describe its irreducible decomposition as a $\mathfrak{i p}(2 m) \oplus$ 解 $(2 n)$-module (Theorem A). The affine Lie algebra pair ($\left.\mathrm{C}_{m}^{(1)}, \mathrm{C}_{n}^{(1)}\right)$ also forms a dual pair on $\wedge\left(\hat{W}_{4 m n}^{-}\right)$(Theorem B). As corollaries we deduce new dualities for branching rules. Details appear in our forthcoming paper [2], where we also construct various dual pairs for all classical Lie algebras, and for their affinizations. Our method is similar to that of [3], which deals with dual pairs on the Shale-Weil modules.
§ 1. Finite dimensional case. 1.1. After [1] we review the spinor representation of the orthogonal Lie algebra $\mathfrak{o}(2 l)=\left\{\left.X \in \mathfrak{g l}(2 l)\right|^{t} X\left[\begin{array}{cc}0 & \mathbf{1}_{l} \\ \mathbf{1}_{l} & 0\end{array}\right]\right.$ $\left.+\left[\begin{array}{cc}0 & \mathbf{1}_{l} \\ \mathbf{1}_{l} & 0\end{array}\right] X=0\right\}$. Let $\mathcal{C}\left(W_{2 l}\right)$ be the Clifford algebra over the vector space $W_{2 l}:=V^{l} \oplus V_{l} \simeq C^{2 l}$, where $V^{l}:=\oplus_{j=1}^{l} \boldsymbol{C} \psi^{j}$ and $V_{l}:=\oplus_{j=1}^{l} \boldsymbol{C} \psi_{j}$, with a symmetric bilinear form (,) defined by

$$
\left(\psi^{i}, \psi_{j}\right)=\delta_{j}^{l} \quad \text { and } \quad\left(\psi^{i}, \psi^{j}\right)=0=\left(\psi_{i}, \psi_{j}\right) \quad \text { for } 1 \leq i, j \leq l .
$$

As a C-algebra $\mathcal{C}\left(W_{2 l}\right) \simeq \operatorname{Mat}\left(2^{l}, C\right)$. Its irreducible representation is realized on the exterior algebra $\wedge\left(V^{l}\right)$, with defining 1 the vacuum vector and V^{l} (resp. V_{l}) the creation (resp. annihilation) operators. Write $[a, b]$ for $a b-b a$, and the spinor representation s is defined by

$$
\begin{gathered}
s: \mathfrak{o}(2 l) \ni\left[\begin{array}{cc}
E^{i}{ }_{j} & 0 \\
0 & -E^{j}{ }_{i}
\end{array}\right] \longmapsto \frac{1}{2}\left[\psi^{i}, \psi_{j}\right] \in \mathcal{C}\left(W_{2 l}\right) \simeq \operatorname{End} \wedge\left(V^{\imath}\right), \\
{\left[\begin{array}{ccc}
0 & E^{i}{ }_{j}-E^{j}{ }_{i} \\
0 & 0
\end{array}\right] \longmapsto \frac{1}{2}\left[\psi^{i}, \psi^{j}\right],\left[\begin{array}{cc}
0 & 0 \\
E^{i}{ }_{j}-E^{j}{ }_{i} & 0
\end{array}\right] \longleftrightarrow \frac{1}{2}\left[\psi_{i}, \psi_{j}\right] \quad(1 \leq i, j \leq l) .}
\end{gathered}
$$

1.2. Now we deal with the dual pair ($\mathfrak{z p}(2 m), \mathfrak{z p}(2 n)$). Recall that

$$
\begin{aligned}
\mathfrak{g n}(2 n): & =\left\{\left.X \in \operatorname{gr}(2 n)\right|^{t} X\left[\begin{array}{lr}
& \mathbf{1}_{n} \\
-\mathbf{1}_{n}
\end{array}\right]+\left[\begin{array}{ll}
-\mathbf{1}_{n} & \mathbf{1}_{n}
\end{array}\right] X=0\right\} \\
& =\left\{\left[\begin{array}{rr}
A & B \\
C & -{ }^{t} A
\end{array}\right] \left\lvert\, \begin{array}{l}
A, B, C \in \operatorname{gr}(n) \\
{ }^{t} B=B,{ }^{t} C=C
\end{array}\right.\right\},
\end{aligned}
$$

and let $l=2 m n$. Then there exist two Lie algebra monomorphisms $R: \mathfrak{z p}(2 n)$ $\rightarrow \mathfrak{o}(2 l)$ and $L: \mathfrak{g n}(2 m) \rightarrow \mathfrak{o}(2 l)$ so that $R(\mathfrak{g n}(2 n))^{\prime}=L(\mathfrak{p p}(2 m))$ and $L(\mathfrak{~} \mathfrak{p}(2 m))^{\prime}$
$=R(\mathfrak{Z p}(2 n))$, where $A^{\prime}:=\{x \in \mathfrak{o}(2 l) \mid[x, A]=0\}$. Such R (resp. L) arises from the right (resp. left) action of $\mathfrak{j p}(2 n)$ (resp. $\mathfrak{Z p}(2 m)$) on Mat $(2 m \times 2 n, C)$. Considering $s \circ R$ and $s \circ L$, we get

Proposition 1. The map $\mathfrak{Z p}(2 n) \rightarrow \mathcal{C}\left(W_{4 m n}\right) \simeq$ End $\wedge\left(V^{2 m n}\right)$ defined by

$$
\begin{aligned}
& \mathfrak{ŋ n}(2 n) \ni {\left[\begin{array}{cc}
E^{i}{ }_{j} & 0 \\
0 & -E^{j}{ }_{i}
\end{array}\right] \longmapsto } \\
& \quad\left[\begin{array}{cc}
0 & E^{i}{ }_{j}+E^{j}{ }_{i} \\
0 & 0
\end{array}\right] \longmapsto \frac{1}{2} \sum_{p=1}^{m}\left(\left[\psi^{i, p}, \psi_{j, p}\right]-\left[\psi^{-j, p}, \psi_{-i, p}\right]\right) \in \operatorname{End} \wedge\left(V^{2 m n}\right) \\
& {\left[\begin{array}{cc}
0 & 0 \\
E^{i}{ }_{j}+E^{j}{ }_{i} & 0
\end{array}\right] \longmapsto \frac{1}{2} \sum_{p=1, p}^{m}\left(\left[\psi^{-i, p}, \psi_{j, p}\right]+\left[\psi^{j, p}, \psi_{-i, p}\right]\right) }
\end{aligned}
$$

is a Lie algebra monomorphim, and so is the map

$$
\begin{aligned}
\mathfrak{Z}(2 m) \ni & {\left[\begin{array}{cc}
E^{p}{ }_{q} & 0 \\
0 & -E^{q}
\end{array}\right] \longmapsto } \\
& {\left[\begin{array}{cc}
0 & E^{p}{ }_{q}+E^{q}{ }_{p} \\
0 & 0
\end{array}\right] \longmapsto \frac{1}{2} \sum_{j=1}^{n}\left(\left[\psi^{j, p}, \psi_{j, q}\right]+\left[\psi^{-j, p}, \psi_{-j, q}\right]\right) \in \text { End } \sum_{j=1}^{n}\left(\left[\psi^{j, p}, \psi^{-j, q}\right]+\left[\psi^{j, q}\right)\right.} \\
& {\left[\begin{array}{cc}
0 & 0 \\
E^{p}{ }_{q}+E^{q}{ }_{p} & 0
\end{array}\right] \longmapsto \frac{1}{2} \sum_{j=1}^{n}\left(\left[\psi_{j, p}, \psi_{-j, q}\right]+\left[\psi_{j, q}, \psi_{-j, p}\right]\right) \quad(1 \leq p, q \leq m) . }
\end{aligned}
$$

Here we use symbols $\psi^{ \pm k, p}$ (resp. $\left.\psi_{ \pm k, p}\right)(1 \leq p \leq m, 1 \leq k \leq n)$ for the basis of V^{l} (resp. V_{l}), instead of ψ^{j} (resp. ψ_{j}) $(1 \leq j \leq l)$ in 1.1. Note that $\wedge\left(V^{l}\right) \simeq \wedge\left(V^{2 n}\right)^{\otimes m} \simeq \wedge\left(C^{2 n}\right)^{\otimes m}$ as $\mathfrak{z p}(2 n)$-modules.

Let $\mathfrak{h}:=\{h \in \mathfrak{Z n}(2 m) \mid h$ is diagonal $\}, \mathfrak{n}_{+}:=\left\{\left.\left[\begin{array}{rr}A & B \\ 0 & -{ }^{t} A\end{array}\right] \right\rvert\, A\right.$ is strictly upper triangular, $\left.{ }^{t} B=B\right\}$ and $\mathfrak{n}_{-}:={ }^{t} \mathfrak{n}_{+}$, then we fix a triangular decomposition $\mathfrak{Z n}(2 \mathrm{n})=\mathfrak{n}_{+} \oplus \mathfrak{h} \oplus \mathfrak{n}_{-} . \quad$ By $L^{\mathfrak{g}}(\lambda)$ we denote the irreducible \mathfrak{g}-module with highest weight λ. A sequence $Y=\left(y_{1}, \cdots, y_{m}\right) \in \boldsymbol{Z}^{m}$ with $n \geq y_{1} \geq \cdots \geq y_{m} \geq 0$ is called a Young diagram contained in the $m \times n$ rectangle, and the set of all such sequences is denoted by $\mathrm{R}_{m n}$. For $Y=\left(y_{i}\right) \in \mathrm{R}_{m n}$ we set $|Y|:=\Sigma_{i} y_{i}$, and define $Y^{\dagger} \in \mathrm{R}_{n m}$ by taking the complement of Y in $\mathrm{R}_{m n}$ and transposing it: for example,

Put $Y\left(\left[\begin{array}{cc}E^{j}{ }_{j} & \\ & -E^{j}{ }_{j}\end{array}\right]\right):=y_{j}$ for $Y=\left(y_{1}, \cdots, y_{m}\right) \in \mathbf{R}_{m n}$, and we identify a diagram with a dominant integral weight of $\mathfrak{Z n}(2 m)$. Then our main result is

Theorem A. As a $\mathfrak{j p}(2 m) \oplus \Im \mathfrak{p}(2 n)$-module,

$$
\wedge\left(V^{2 m n}\right) \simeq \oplus_{Y \in \mathrm{R}_{m n}} \boldsymbol{L}^{8 p(2 m)}(Y) \otimes \boldsymbol{L}^{\text {gpl }(2 n)}\left(Y^{\dagger}\right) .
$$

The highest weight vector of the Y-component with respect to 㫽 $(2 m)$ $\oplus \mathfrak{s p}(2 n)$ is $\wedge_{\tilde{y}_{j}^{p}=1} \psi^{p, j} \cdot 1$, where $Y \in \mathrm{R}_{m n}$ is identified with ($\tilde{\mathcal{y}}_{j}^{p}$) as follows:

All irreducible highest weight module of $\mathfrak{g p}(2 n)$ appears as the irredu－ cible component of $\wedge\left(V^{2 m n}\right)$ ，when m varies over $Z_{>0}$ ．
§2．Affine version．2．1．Let $\hat{g}:=g \otimes C\left[t, t^{-1}\right] \oplus C^{c \grave{~}}$ be the non－twisted affine Lie algebra associated to a simple Lie algebra g（see［5］）．We review Frenkel＇s spinor representation of $\mathfrak{o}^{\wedge}(2 l)$［1］．Let $\mathcal{C}\left(\hat{W}_{2 l}\right)$ be the Clifford algebra over the C－vector space $\hat{W}_{2 l}:=W_{2 l} \otimes \boldsymbol{C}\left[t, t^{-1}\right]$ with a symmetric form $\left(\psi(\mu), \psi^{\prime}\left(\mu^{\prime}\right)\right):=\delta_{\mu+\mu^{\prime}, 0}\left(\psi, \psi^{\prime}\right)$ ，where $\psi(\mu):=\psi \otimes t^{\mu}$ ．Put $\hat{W}_{2 l}^{+}:=\left(W_{2 l} \otimes t C[t]\right) \oplus$ $\left(V_{l} \otimes 1\right)$ and $\hat{W}_{2 l}^{-}:=\left(W_{2 l} \otimes t^{-1} C\left[t^{-1}\right]\right) \oplus\left(V^{l} \otimes 1\right)$ ，then $\wedge\left(\hat{W}_{2 l}^{-}\right)$becomes an ir－ reducible $\mathcal{C}\left(\hat{W}_{2 l}\right)$－module by defining 1 the vacuum，$\hat{W}_{2 l}^{-}$（resp．$\left.\hat{W}_{2 l}^{+}\right)$the crea－ tion（resp．annihilation）operators．Define

$$
: a(\mu) b(\nu)::=a(\mu) b(\nu)-(a(\mu), b(\nu)) \varepsilon, \text { where } \varepsilon:= \begin{cases}1 & \text { if } \mu>0>\nu \\ 1 / 2 & \text { if } \mu=0=\nu, \\ 0 & \text { otherwise }\end{cases}
$$

and the spinor representation \hat{s} is defined by

$$
\begin{gathered}
\hat{s}: \hat{\mathrm{v}}(2 l) \ni c^{\bullet} \wedge(2 l) \longmapsto i d \in \operatorname{End} \wedge\left(\hat{W}_{-\bar{z}}^{-}\right) \\
X(k):=X \otimes t^{k} \longmapsto \Sigma_{\mu \in Z}: a(\mu) b(k-\mu):,
\end{gathered}
$$

for $X \in \mathfrak{p}(2 l)$ that satisfies $s(X)=(1 / 2)[a, b]\left(a, b \in W_{2 l}\right)$ and $k \in Z$ ．
2．2．We proceed to the dual pair $\left(\mathrm{C}_{m}^{(1)}, \mathrm{C}_{n}^{(1)}\right)$ ．Again taking $l=2 m n$ we get a Lie algebra monomorphism \hat{L}（resp．\hat{R} ）by defining

Proposition 2．The map $\hat{s} \circ \hat{L}: \mathfrak{S p}^{\wedge}(2 m) \rightarrow$ End $\wedge\left(\hat{W}_{4 m n}^{-}\right)($resp．$\hat{s} \circ \hat{R}:$ $\mathfrak{z p}{ }^{\wedge}(2 n) \rightarrow$ End $\wedge\left(\hat{W}_{4 m n}^{-}\right)$）is a level n（resp．m）integrable representation of $\mathfrak{\mathfrak { j }}{ }^{\wedge}(2 m)\left(r e s p . \mathfrak{S}^{\wedge}(2 n)\right)$ ，and $\left[\hat{s} \circ \hat{L}\left(\mathfrak{Z} \mathfrak{p}^{\wedge}(2 m)\right), \hat{s} \circ \hat{R}\left(\mathfrak{j} \mathfrak{p}^{\wedge}(2 n)\right)\right]=0$ ．

Theorem B．As a ⿰⿱彐⿰冫⿰亻⿱丶⿻工二＾入入（ $2 m$ ）$\oplus \mathfrak{S p}^{\wedge}(2 n)$－module，

$$
\wedge\left(\hat{W}_{4 m n}^{-}\right) \simeq \oplus_{Y \in \mathrm{R}_{m n}} \boldsymbol{L}^{\operatorname{sp} \wedge(2 m)}(Y, n) \otimes \boldsymbol{L}^{8 \dagger \wedge \wedge(2 n)}\left(Y^{\dagger}, m\right) .
$$

The highest weight vector of the Y－component is $\wedge_{\tilde{y}_{j}^{p}=1} \psi^{p, j}(0) \cdot 1$ ，where $\left(\tilde{y}_{j}^{p}\right)$ is as in Theorem A．All level m irreducible integrable highest weight module of $\mathrm{C}_{n}^{(1)}$ appears as the irreducible component of $\wedge\left(\hat{W}_{4 m n}^{-}\right)$．

Here we write $L^{\hat{\imath}}(Y, n)$ for $L^{\hat{\imath}}(\lambda)$ ，when the highest weight $\lambda \in(\mathfrak{h} \otimes 1$ $\left.\oplus C c^{\hat{\hat{s}}}\right)^{*}$ satisfies $\lambda\left(c^{\hat{\mathrm{s}}}\right)=n$ and $\left.\lambda\right|_{\mathfrak{k} \otimes 1}=Y \in \mathrm{R}_{m n} \longrightarrow \mathfrak{h}^{*}$（see 1．2）．

Theorems A and B are shown by the Weyl－Kac character formula and its application derived by Jimbo－Miwa［4］．
§3．Dualities of branching rules．We derive two affine cases here． First，noting $\wedge\left(\hat{W}_{4(l+m) n}^{-}\right) \simeq \wedge\left(\hat{W}_{4 l n}^{-}\right) \otimes \wedge\left(\hat{W}_{4 m n}^{-}\right)$we deduce

Corollary 3．Define the coset Virasoro module $\mathcal{A}_{y, y^{\prime}}^{Y}$（resp． $\left.\mathcal{B}_{Y^{y, y^{\prime}}}^{y}\right)$ by

$$
\begin{gathered}
\boldsymbol{L}^{\text {sp } \wedge(2 l+2 m)}(Y, n) \simeq \oplus_{y \in \mathbf{R}_{L n}, y^{\prime} \in \mathbf{R}_{m n}} \mathcal{A}_{y, y^{\prime}}^{Y} \otimes \boldsymbol{L}^{\text {gp } \wedge(2 l)}(y, n) \otimes \boldsymbol{L}^{\text {sp } \wedge(2 m)}\left(y^{\prime}, n\right) \\
\text { (resp. } \left.\boldsymbol{L}^{\text {gp } \wedge(2 n)}(y, l) \otimes \boldsymbol{L}^{\text {gp } \wedge(2 n)}\left(y^{\prime}, m\right) \simeq \oplus_{Y \in \mathbf{R}_{l+m, n}} \mathcal{B}_{Y}^{y, y^{\prime}} \otimes \boldsymbol{L}^{\text {sp } \wedge(2 n)}(y, l+m)\right) .
\end{gathered}
$$

Then $\mathcal{A}_{y, y^{\prime}}^{Y} \simeq \mathscr{B}_{Y \dagger}^{\nu+y^{\prime \dagger}}$ for $y \in \mathbf{R}_{l, n}, y^{\prime} \in \mathbf{R}_{m, n}$ and $Y \in \mathbf{R}_{l+m, n}$.
Next we consider the restriction to the subalgebra

$$
\mathfrak{Z p}(2 n) \otimes C\left[t^{2}, t^{-l}\right] \oplus C c \subset \mathfrak{Z p}(2 n) \otimes C\left[t, t^{-1}\right] \oplus C c=\mathfrak{z} \wedge(2 n) .
$$

This time the counterpart is $\mathfrak{S p}{ }^{\wedge}(2 m) \stackrel{\text { ' }}{\longrightarrow} \mathfrak{S p}^{\wedge}(2 l m)$, where ι is defined by
Lemma. (i) The following map is a Lie algebra monomorphism.
$\iota: \mathfrak{\zeta p}^{\wedge}(2 m) \ni\left[\begin{array}{cc}E^{p}{ }_{q} & 0 \\ 0 & -E^{q}{ }_{p}\end{array}\right](i+k l) \longmapsto \sum_{j=1}^{i}\left[\begin{array}{cc}E^{p}{ }_{q} \otimes E^{j}{ }_{l+j-i} & 0 \\ 0 & -E^{q}{ }_{p} \otimes E^{l+j-1}{ }_{j}\end{array}\right](k+1)$

$$
+\sum_{j=i+1}^{l}\left[\begin{array}{cc}
E^{p}{ }_{q} \otimes E^{j}{ }_{j-i} & 0 \\
0 & -E^{q}{ }_{p} \otimes E^{j-i}{ }_{j}
\end{array}\right](k) \in \mathfrak{Z} \wedge(2 l m)
$$

$$
\left[\begin{array}{cc}
0 & E^{p}{ }_{q}+E^{q} \\
0 & 0
\end{array}\right](i+k l) \longmapsto \sum_{j=1}^{i}\left[\begin{array}{cc}
0 & E^{p}{ }_{q} \otimes E^{j}{ }_{i-j+1}+E^{q}{ }_{p} \otimes E^{i-j+1}{ }_{j} \\
0 & 0
\end{array}\right](k+1)
$$

$$
+\sum_{j=i+1}^{l}\left[\begin{array}{ll}
0 & E^{p} \otimes E^{j}{ }_{l+i-j+1}+E_{p}^{q} \otimes E^{l+i-j+1}{ }_{j} \\
0 & 0
\end{array}\right](k),
$$

$$
\left[\begin{array}{cc}
0 & 0 \\
E^{p}{ }_{q}+E^{q}{ }_{p} & 0
\end{array}\right](i+k l) \longmapsto \sum_{j=1}^{l-i}\left[\begin{array}{cc}
0 & 0 \\
E^{p} \otimes E^{j}{ }_{l-i-j+1}+E^{q} \otimes E^{l-i-j+1} & 0
\end{array}\right](k)
$$

$$
+\sum_{j=l+1-i}^{l}\left[\begin{array}{cc}
0 & 0 \\
E^{p}{ }_{q} \otimes E^{j}{ }_{2 l-i-j+1}+E^{q}{ }_{p} \otimes E^{2 l-i-j+1}{ }_{j} & 0
\end{array}\right](k+1)
$$

$$
c^{8 p \wedge \wedge(2 m)} \longmapsto c^{8 p \wedge(2 l m)} \quad(1 \leq i \leq l, k \in \boldsymbol{Z} \text { and } 1 \leq p, q \leq m) .
$$

(ii) Let $l=2$. Then $\iota\left(\mathfrak{S p}^{\wedge}(2 m)\right)=\left\{x \in \mathfrak{g} \mathfrak{p}^{\wedge}(4 m) \mid \sigma(x)=x\right\}$, where σ is the order 2 diagram automorphism of $\mathrm{C}_{2 m}^{(1)}$ [4].

Corollary 4. Define \boldsymbol{A}_{Y}^{y} (resp. B_{y}^{Y}) by

$$
\boldsymbol{L}^{\mathrm{g} \wedge \wedge(2 n)}(y, m) \simeq \oplus_{Y \in \mathbf{R}_{n}, l m} \boldsymbol{A}_{Y}^{y} \otimes \boldsymbol{L}^{\mathrm{gp} \wedge(2 n)}(Y, l m)
$$

(resp. $\left.\boldsymbol{L}^{\text {sp } \wedge ~}(2 l m)(Y, n) \simeq \oplus_{y \in \mathrm{R}_{m, n}} \boldsymbol{B}_{y}^{\mathrm{Y}} \otimes \boldsymbol{L}^{\text {gp^ }}{ }^{(2 m)}(y, n)\right)$.
Then $\boldsymbol{A}_{Y \dagger}^{y \dagger} \simeq \boldsymbol{B}_{y}^{V}$ as a Virasoro module, for $Y \in \mathrm{R}_{l m, n}$ and $y \in \mathrm{R}_{m, n}$.
This is our second duality, which is shown by using "principal picture" on $\wedge\left(\hat{W}_{4 m n}^{-}\right)$. The case $n=1$ of Cor. 3 appears in [6] and [7], and the case $l=2$ of Cor. 4 appears in [4].

References

[1] I. Frenkel: Spinor representations of affine Lie algebras. Proc. Nat'l. Acad. Sci. USA, 77, 6303-6306 (1980).
[2] K. Hasegawa: Dual pairs on spinors (in preparation).
[3] R. Howe: Dual pairs in physics. Lect. Appl. Math., 21, 179-207 (1985).
[4] M. Jimbo and T. Miwa: On a duality of branching rules for affine Lie algebras. Advanced Studies in Pure Math., 6, 17-65 (1985).
[5] V. G. Kac: Infinite Dimensional Lie Algebras. 2nd ed., Cambridge (1985).
[6] V. G. Kac and M. Wakimoto: Modular and conformal invariance constraints in representation theory of affine Lie algebras (1987) (preprint).
[7] I. Yamanaka: Equivalence of degenerate (super) conformal models. Prog. Theor. Phys., 76, 1154-1165 (1986).

