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0. Introduction. Weyl’s reciprocity theorem says that the sym-
metric group and the general linear group GL (n, C) are mutually com-
mutant (i.e. (, GL (n, C)) forms a dual pair [3]) on the tensor space (C)(R).
The purpose of this paper is’ to give the spinor analogues of this theorem"
we claim (p(2m), p(2n)) forms a dual pair on the o(4mn)-module /(C),
and describe its irreducible decomposition as a p(2m)p(2n)-module
(Theorem A). The affine Lie algebra pair (C), C)) also forms a dual pair
on () (Theorem B). As corollaries we deduce new dualities for
branching rules. Details appear in our forthcoming paper [2], where we
also construct various dual pairs for all classical Lie algebras, and for their
affinizations. Our method is similar to that of [3], which deals with dual
pairs on the Shale-Weil modules.

1. inite dimensional case. 1.1. After [1] we review the spinor

representation of the orthogonal Lie algebra 0(2/)= -X e (2/)X[0
[0 ]X=0). LetC(Wu) be the Clifford algebra over the vector space

CW with a sym-Wu =VV C where V’==CW andV ==metric bilinear form (,) defined by
( )= and ( )=0=(,) for 1<i, ]<l

As C-algebr C(Wu)Mt (2, C). Its irreducible representation is real-
ized on the exterior algebra (W), with defining 1 the vacuum vector and
V (resp. V) the creation (resp. annihilation) operators. Write [a, b] for
ab-ba, and the spinor representation s is defined by

s’o(2/)t[EY0 --Eye0] 1[,] e C(W)End (W),

[o [ o o]- [’,] ,] (l<i,]<l).
0 0 E-E 0

1.2. Now we deal with the dual pair (p(2m), p(2n)). Recall that

1]+[ ilx=o}
C -- B=B, C=CJ’

end le l=m. hen here exis wo ie algebra monomorhisms R" (2)
(21) and L" (m)o(2l) so ha R(())’=L((2m)) and L(g(2m))’
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=R(p(2n)), where A"= (x e (2/) [x, A]=O}. Such R (resp. L) arises from
the right (resp. left) action of p(2n) (resp. p(2m)) on Mat(2m2n, C).
Considering s R and s L, we get

Proposition 1. The map p(2n)---C(W,)End /k (V) defined by
p(2n)[E 0 ] 1: ([’, ,]--[q-’, ,,])e End/k(V)tO --E -- ,=x

> , %,]+ [-’’, ,])EH_E - __
([#-’

is a Lie algebra mono,morphim, and so is the map

p(2m) q >-- ([’, %.q]+[-’" _.q]) e End A(V)--E 2 =
0 0 ([’" -’

(1_i, ]_n)

example,
3

R.Y= 2

0

5
Y[ r 3

> yt= "---n

y 2
2

(m=5, n---4).

y[E/r _E]\])’=y for Y=(y,...,y)eR, and we identify aPut

diagram with a dominant integral weight of p(2m). Then .our main result
is

Theorem A. As a p(2m)p(2n)-module,
r,()(y)L (Y).A(V)

The highest weight vector of the Y-component with respect to Cp(2m)
p(2n) is A=’. 1, where Y eR is identified with (y) as follows"

0 0] 1>-- ([#., -.]+[#.q, #_.]) (l<p,q<m).EPq-FEq 0 2 :
Here we use symbols , (resp. +/-,) (l<_p<_m, lgk<_n) for the

basis of V (resp. V), instead of (resp. ) (1<_]<_/) in 1.1. Note that
A (V) A(V)(R) A(C)(R) as p(2n)-modules.

Let I)’={he(2m)lh is diagonal}, / "= {[A0 _ABIIA__, is strictly upper

triangular, B=B} and
_

"=n/, then we fix a triangular decomposition

p(2n)= /(R)t)(R)_. By L() we denote the irreducible g-module with highest
weight 2. A sequence Y=(y, ..., y) e Z with n_y_. _y_O is called
a Young diagram contained in the m n rectangle, and the set of all such
sequences is denoted by R. For Y=(y) eR we set IY[’-Xy, and define
YteR by taking the complement of Y in R and transposing it" for
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Rv Y 1...n; --n 1
1 ...1 11110.

1110.
110...

n 1 0

(?)__;...; e Mat (m 2n).
j=+l;...;

All irreducible highest weight module of Cp(2n) appears as the irredu-
cible component of A(VO, when m varies over Z>0.

2. Affine version. 2.1. Let ’=g(R)C[t, t-]@C be the non-twisted
affine Lie algebra associated to a simple Lie algebra g (see [5]). We review
Frenkel’s spinor representation of ^(2/) [1]. Let 6’(1) be the Clifford
algebra over the C-vector space "= W@C[t, t-] with a symmetric form

.= w (W@ tc[t])(+(#), +’(’)) ,+,,.0(+, +’), where +() +@ t, Put + "=

(V,@I) and ’=(Wz@t-C[t-])@(V@I), then A()becomes n ir-
reducible C(z)-module by defining 1 the vacuum, (resp. ) the crea-
tion (resp. annihilation) operators. Define

a()b(v)" "=a(z)b(v)--(a(z), b(v)),, where ,’= /2 if =O=v,
otherwise

and the spinor representation is defined by

" (2/) cu) >id e End
X(k) "=X@tX,ez "a(z)b(k Z) ",

for X e o(2/) that satisfies s(X)=(1/2)[a, b] (a, b e W) and k e Z.
2.2. We proceed to the dual pair (C), C)). Again taking l=2mn we

get a Lie algebra monomorphism (resp. ) by defining

’P(2m)A(k)">L(A(k)e(21)(resp’:p(2n)A(k),>R(A)(k) e o (2/))Cp (2m)l >. C (2/)

Proposition 2. The map o . p’(2m)End
p(2n)End A(;)) is a level n (resp. m) integrable representation of
p(2m) (resp. p(2n)), and [ (p(2m)), (p(2n))]=0.

Theorem B. As a p’(2m)@p (2n)-- module,
A(;) @ L(Y,n)@L(Y*, m).

The highest weight vector of the Y-component is =.(0). 1, where ()
is as in Theorem A. All level m irreducible integrable highest weight
module of C appears as the irreducible component of ().

Here we write D(Y, n) or L(), when the highest weight e (@1
Cca)* satisfies 2(c)=n and al=Y eR* (see 1.2).

Theorems A nd B are shown by the Weyl-Kc character formul nd
its application derived by Jimbo-Miwa [4].

3. Dualities of branching rules. We derive two affine cases here.
First; noting A(#+))A(#.)@A(#) we deduce

YCorollary 3. Define the coset Virasoro mo.dule v,v’ (resp. ’’) by
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r (R)LOL, (t/,o(y, n)e,,,,e,,,,, )(y, n)@L n)
(resp. L (en)(y, 1)@L,, ()(y,, m) rea+.’’LE <’)(Y, +m)).

yThen,’for y e R,, e R, and Y e R+,n.
Next we consider the restriction to the subalgebra

p(2n)@C[t, t-]Cccp(2n)@C[t, t-]Cc=p(2n).
This time the counterpart is p(2m)’ >p(21m), where is defined by

Lemma. ( i ) The following map is a Lie algebra monomorphigm.

" Cp(2m) [Pq 0 ](i+k/)l [EPqEJl+j-t 0 ](k+l)Eq j= EqE +-

0 Eq+Eq (i+kl)
0 0 0j=l 0

[0 Eq)E+ I=+-EqE+-+](k)
:+ 0 0

"0 O0] (i+ kl)
EPq -- Eqp --g+l-

CO (2m){ Cp (2/m)

: EPq)E__+=i=EqE--+ 0

[ 0 O](k+ 1),
Eq@E.__++Eq@E--:+: 0

(1i/, k e Z and lp, qm).
(ii) Let l=2. Then t(p^(2m))= {x e p^(4m) [a(x)=x}, where a is the

order 2 diagram automorphism o.f C () [4]2

Corollary 4. Define A (resp. B) by
L*^ (")(y, m) r+a.,,A@L’" (n)(y, lm)

nr.* ()(y, n)).(resp. L’()(Y, n)
ThenA_B as a Virasoro module, for Y e R,n and y e R,.

This is our second duality, which is shown by using t’principal picture"
on A(W;). The case n= 1 of Cot. 3 appears in [6] and [7], and the case
/=2 of Cot. 4 appears in [4].
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