12. A Proof of Existence of The Stable Jacobi Tensor

By Nobuhiro INNAMI

Department of Mathematics, Nagoya Institute of Technology

(Communicated by Kunihiko KODAIRA, M. J. A., Feb. 12, 1987)

0. Let M^n be a complete Riemannian manifold without conjugate points and R the curvature tensor of M. Let $\gamma: (-\infty, \infty) \to M$ be a geodesic and let E_1, \dots, E_n be a parallel orthonormal frame field along γ with $E_n(t)$ $=\dot{\gamma}(t)$. We consider the $(n-1) \times (n-1)$ matrix differential equation (J) D''(t) + R(t)D(t) = 0, where $R(t)_{ij} = \langle R(E_i, E_n)E_n, E_j \rangle(t)$ for any $t \in (-\infty, \infty)$. If $D(t), -\infty < t < \infty$, is a solution of (J) and x is a parallel vector field along γ , then D(t)x(t), $-\infty < t < \infty$, is a Jacobi field along γ . The following theorems play important roles in the study of manifolds without conjugate points.

Theorem 1. Let M be a complete simply connected Riemannian manifold without conjugate points and $\gamma: (-\infty, \infty) \rightarrow M$ a geodesic. If $D_s(t)$, $-\infty < t < \infty$, are the solution of (J) with $D_s(0) = I$, $D_s(s) = 0$ for all s > 0, then the sequence D_s converges to a Jacobi tensor D along γ with D(0) = I, $\det D(t) \neq 0$ for any $t \in (-\infty, \infty)$ as $s \rightarrow \infty$.

Theorem 2. Let M and $\tilde{\tau}$ be as above. Then, there is a symmetric matrix field A along $\tilde{\tau}$ which satisfies the Ricatti equation, namely $A'(t) + A(t)^2 + R(t) = 0$ for any $t \in (-\infty, \infty)$.

The theorems were originally proved by Hopf [5] and Green [4] under a more general setting. The proof was explained by Eberlein [1], Eschenburg-O'Sullivan [2] and Goto [3]. The purpose of the present note is to give a geometrical and visual proof which is simpler to some readers. The different point from their proof is that we prove Theorem 2 before Theorem 1. Theorem 1 is an immediate consequence from Theorem 2.

1. Since *M* is simply connected, all geodesics $\alpha: (-\infty, \infty) \rightarrow M$ are minimizing and *M* is diffeomorphic to E^n . In particular, all spheres are of class C^{∞} .

Let γ and D_s be as in Theorem 1. $D_s(t), -\infty < t < \infty$, is obtained by the following way: Let $S(\gamma(0), \gamma(s))$ be the sphere with center $\gamma(s)$ through $\gamma(0)$ and let v be the unit normal vector field on $S(\gamma(0), \gamma(s))$ pointing $\gamma(s)$. We consider a map $\phi : S(\gamma(0), \gamma(s)) \times (-\infty, \infty) \to M$ given by $\phi(q, t) = \exp tv(q)$. We denote by ϕ_t the map $q \to \phi(q, t)$. If $c : (-\varepsilon, \varepsilon) \to S(\gamma(0), \gamma(s)), c(0) = \gamma(0)$, is a curve, then $\phi \circ (c \times id) : (-\varepsilon, \varepsilon) \times (-\infty, \infty) \to M$ is a geodesic variation, and, thus, $\phi_{t*}x, -\infty < t < \infty$, is a Jacobi field along γ for any $x \in T_{\gamma(0)}S(\gamma(0), \gamma(s))$. Hence,

$$D_s(t) = \phi_{t*} \circ P_t^{-1}$$

for any $t \in (-\infty, \infty)$, where $P_t: T_{\tau(0)}M \to T_{\tau(t)}M$ is the parallel translation along τ .

Since *M* has no conjugate points, det $D_s(t) \neq 0$ for any t < s. If $A_u(t)$ is the second fundamental form of $S(\gamma(t), \gamma(u))$ at $\gamma(t)$ relative to $-\dot{\gamma}(t)$, then we have

$$A_{s}(t) = D'_{s}(t)D_{s}(t)^{-1},$$

and,

(*) $A'_{s}(t) + A_{s}(t)^{2} + R(t) = 0,$

for any t < s, because $\phi_t(S(\gamma(0), \gamma(s))) = S(\gamma(t), \gamma(s))$ (see [2] or [6]). This implies that $A_s(t), -\infty < t < s$, is the symmetric solution of matrix Ricatti differential equation

(R)
$$\frac{dX}{dt} + X^2 + R(t) = 0$$

with initial condition $X(0) = A_s(0)$.

Let $-\infty < t < s$. Then, from Lemma which will be proved in 2, $A_u(t) \ge A_s(t) \ge A_{u'}(t)$

for any u < t < u' < s, namely, for any perpendicular vector x to $\dot{\gamma}(t)$, (**) $\langle A_u(t)x, x \rangle \ge \langle A_s(t)x, x \rangle \ge \langle A_{u'}(t)x, x \rangle$,

since $S(\gamma(t), \gamma(s))$ separates $S(\gamma(t), \gamma(u))$ from $S(\gamma(t), \gamma(u'))$ in M. In particular, $A_{-1}(0) \ge A_s(0) \ge A_u(0)$, for any 0 < u < s. Therefore, $\{A_s(0)\}$ converges to a symmetric matrix A(0) as $s \to \infty$.

We want to prove that the sequence $\{A_s\}$ of symmetric matrices along \tilde{r} converges to a solution of (R) which is defined on $(-\infty,\infty)$. Fix a T>0. Let $C(T) := \max\{|\langle A_{T+1}(t)x,x\rangle|, |\langle A_{-(T+1)}(t)x,x\rangle|; -T < t < T, x \perp \dot{r}(t), |x|=1\}$. If s > T+1, then we see by (**)

$$|\langle A_s(t)x,x\rangle| < C(T)$$

for any -T < t < T and $x \perp \dot{\tau}(t)$, |x| = 1. Let E_1, \dots, E_n be a parallel orthonormal frame field along τ with $\dot{\tau}(t) = E_n(t)$. Set $A_s(t)E_i(t) = \sum_{j=1}^{n-1} a_s(t)_{ij}E_j(t)$ for t < s. Then, we have

 $|a_s(t)_{ij}| < 2C(T),$ for any -T < t < T, and $i, j = 1, 2, \dots, n-1$, since, for $i \neq j$, $|\langle A_s(t)((E_i(t) + E_j(t))/\sqrt{2}), (E_i(t) + E_j(t))/\sqrt{2} \rangle| < C(T),$

namely,

$$\begin{aligned} |\langle A_s(t)E_i(t), E_j(t)\rangle| - (|\langle A_s(t)E_i(t), E_i(t)\rangle| \\ + |\langle A_s(t)E_j(t), E_j(t)\rangle|)/2 < C(T). \end{aligned}$$

Therefore, we have by integrating (*)

$$|a_{s}(t')_{ij}-a_{s}(t)_{ij}| \leq \left|\int_{t}^{t'} \sum_{k=1}^{n-1} a_{s}(u)_{ik}a_{s}(u)_{kj} + R(u)_{ij}du\right| \leq C_{0}(T) |t'-t|,$$

for any $t, t' \in [-T, T]$, where $C_0(T) := 4(n-1)C(T)^2 + \max\{|R(t)_{ij}|; i, j=1, 2, \dots, n-1, -T < t < T\}$. This implies that the sequence $\{A_s\}_{s>T+1}$ is bounded and equicontinuous on $\{-T, T\}$, and, hence, by the convergence property of $\{A_s(0)\}_{s>T+1}$, converges to a symmetric solution $A(t), -\infty < t < \infty$, of (R). Theorem 2 is proved.

Since D_s are Jacobi tensor fields along γ with $D_s(0)=I$ for all s>0 and since $D'_s(0)=A_s(0)$ converges to A(0), we see that D_s and D'_s converges to a Jacobi tensor field D and its derivative D' along γ respectively such that

D(0)=I and D'(t)=A(t)D(t) for any $t \in (-\infty, \infty)$. It remains to prove that $\det D(t) \neq 0$ for any $t \in (-\infty, \infty)$. Suppose for indirect proof that $\det D(t_0) = 0$ for some t_0 . Then, Ker $D'(t_0) \cap \operatorname{Ker} D(t_0) \neq 0$. This implies that there is a parallel vector field x along γ such that D(t)x(t)=0 for any $t \in (-\infty, \infty)$, contradicting that D(0)=I. Theorem 1 is proved.

2. Let N be a hypersurface in a Riemannian manifold M and U a small neighborhood of $p \in N$ in M. Assume that N decomposes U into two components and the signed distance function f from N in U is differentiable.

Lemma. Let N_1 be a hypersurface in U such that $p \in N_1$ and $f(q) \ge 0$ for any $q \in N_1$. If A and A_1 are the second fundamental forms of N and N_1 with same orientation, then $A \le A_1$ at p.

Proof. Let $x \in T_p N = T_p N_1$. Let $\gamma : [0, \varepsilon) \to N$ and $\gamma_1 : [0, \varepsilon) \to N_1$ be geodesics with $\dot{\gamma}(0) = \dot{\gamma}_1(0) = x$. Then, $(f \circ \gamma)''(0) = 0$ and $(f \circ \gamma_1)''(0) \ge 0$. Thus,

$$\langle A(x), x \rangle = \langle -\nabla_{f(0)} \operatorname{grad} f, \dot{f}(0) \rangle = \langle -\nabla_{f_1(0)} \operatorname{grad} f, \dot{f}_1(0) \rangle$$
$$= \langle -\nabla_{f(0)} \operatorname{grad} f, \dot{f}_1(0) \rangle = \langle -\nabla_{f_1(0)} \operatorname{grad} f, \dot{f}_1(0) \rangle$$

$$= -x \langle \operatorname{grad} f, \gamma_1 \rangle + \langle \operatorname{grad} f(p), \nabla_{\gamma_1} \gamma_1(0) \rangle \leq \langle A_1(x), x \rangle.$$

The lemma is proved.

References

- [1] P. Eberlein: When is a geodesic flow of Anosov type? 1. J. Diff. Geo., 8, 437-464 (1973).
- [2] J.-H. Eschenburg and J. J. O'Sullivan: Jacobi tensors and Ricci curvature. Math. Ann., 252, 1-26 (1980).
- [3] M. Goto: Manifolds without focal points. J. Diff. Geo., 13, 341-359 (1978).
- [4] L. W. Green: A theorem of E. Hopf. Michigan Math. J., 5, 31-34 (1958).
- [5] E. Hopf: Closed surfaces without conjugate points. Proc. Nat. Acad. Sci. U.S.A., 34, 47-51 (1948).
- [6] N. Innami and K. Shiga: The axiom of generalized hyperspheres in Riemannian geometry. Kodai Math. J., 8, 259-263 (1985).