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1. Introduction. Among many perturbation operators appearing
in differential equations, self-adjoint perturbations constitute a special
class because of their nice properties. The purpose of this paper is to
develop a theory of a self-adjoint perturbation added to an unbounded self-
adjoint operator in a Hilbert space. The perturbation in this paper is a
degenerate or a finite-dimensional one which has a physical interpretation
as a feedback in control systems. The perturbed operator has a positive
parameter. It is studied how the minimum eigenvalue of it behaves as
the parameter increases.

We begin with the formulation of the problem. Let H be a real Hilbert
space with an inner product and a norm which are denoted by (., ) and [[.
respectively. Throughout the paper, L will denote an unbounded self-
adjoint linear operator with domain _q)(L) dense in H. It is assumed that
L is positive definite and has compact resolvent. As is well known [2],
there is a set of eigenpairs {,} for L satisfying the following conditions"

( i ) (L)=(,,,...}; 0<<<... <,<...-oo
(ii) L,j=,,j, i>_l, l]<_m,(<oo); and
(iii) the set {, i>_l, l<_]<_m,} forms a complete orthonormal system

in H.
Given a set {+,..., +)cH, let us define an operator B .as

Bx= (x, +,)+,, x e H.
i--1

It is clear that B is self adjoint and nonnegative. Elements q,’s are physi-
cally interpreted as sensors and actuators in feedback control systems.
The operator B is added to L, and the perturbed eperator then becomes

N

(1) L+kB--L+k (.,
i=1

where/c indicates positive parameter. Since B is bounded, L+kB is also
a positive-definite self-adjoint operater with domain (L+B)--(L), nd
has compact resolvent. The minimum eigenvalue of L+kB is denoted by
/(k), and will play an important rele since it determines the decay rate of
the semigroup e-t/> generated by the differential equation in H

dx __(L+kB)x, t>0, x(O)=xo.
dt

It is easy to derive that

( 2 ) /(k) infxe (L,tlxll=l ((L+ kB)x, x)
infxeL,.Iill= { IL/x II+ k(Bx, x}).
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In what llows, several properties f/(k) will be derived. First .of all, it
ollows from (2) that

/(k)

_
inf(,,) ,....,, ,x..= Lmx .

The last term is independent of k and thus an upper bound for z(k). For
brevity, we set

o (x e (L/) x 1}, and
{x e (Ln) x 1, xL, ",} (x e (L/) Ker B x 1}.

Note that the set , is not empty. In fact, we can always find a y0 such
that y is orthogonal to L-m,. .,L-/. Thus, z=L-my e2(L,/) is
orthogonal to , ...,, and z/[ z ]e.

Let {P} be a family of linear bounded operators in H such that
(3) PI strongly as n, and Range P(L/).
There are several such families. For example, P is given as the orthogonal
projection operator mapping H onto span { lin, l]m}. Another
example is given by the formula P=n(n+L)-. Let us introduce an
approximation of B by

N

B E (’,P}P0.
i=l

Operator L+kB has properties similar to those of L+kB. The minimum
eigenvalue of L+kB is denoted by z(k).

2. Results. The following theorem describes the behaviors of p(k)
and Z(k) and the relationship between them.

Theorem 1. Z(k) is absolutely continuous and monotone nondecreas-
ing in k. In fact, only two cases will occur; (i) z(k) is strictly increasing,
or (ii) there is a ko such that g(k) is constant for k ko. The same is
true for fin(k).

If , e (L’n), we have a relationship

Z lim z(k)= lim lim fin(k): lim lim Z(k)

x x
The above relatienship is shown in the llowing diagram"

Remark. he assumption , ..., e (Ln) is no necessary for he
relagion lim_ mine L/ .

In he ollowing eorollary and heorem, P is assumed o be he
orhogonal rojeeion oeraor saed earlier.

Corollar7 2. n is the limit of an algebraic problem in the following
sense
( 5 ) Z=lim min L/x
where={x e PH Ker B x 1}.

Thus, it becomes smewhat simpler to calculate
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Nevertheless, it seems generally difficult to estimate /. We btin,
however, the fllowing theorem from nother viewpoint

Theorem 3. Suppose that N--m1 +mr in (1), and that (PrBPrx, x}
llPrxll, x e H. Then, we can find a suitable k*c such that

1 (r 1--1) --,( 6 ) Z(k*) :> 21 + 1+4a-----V

where a--=l IIPrtll II(1--Pr)ll. Thus, We have an estimate
( 7 ) e-( *’)I1.)<_ e-, t0.
In Theorem 3, it is generally assumed that (PBPx,x)c[]Pxl], c>O.
However, we may take c-1 by adjusting k. We remark that in (6) can
become as large as possible if ’s are chosen so that a does not increase
aster than / as r-c. The result of Theorem 3 is applied to a class of
linear and/or semilinear parabolic differential equations in H in order to
stabilize the evolutions o these equations. The proofs of the above theorems
and its application will appear elsewhere.

We close this paper by showing an illustrative finite-dimensional
example o (4). The calculation of Z(k) is simple, but tedious. Thus, the
proo is omitted.

Example. Let us consider the case where H=R
02.2, B--(., }, and =(a, 0, b). Then,

( i ) if b(1. )>__a(13 ),

/(k) 2{,3+ (a3+ b,)k}
1+ 23+ (a + b2)k+ {{13-- 21 + (b--a)k} +4abk}1/

or k large enough; and
(ii) if b(1 I) <a(l 1),

/(k)=1 or k large enough.
On the other hand, j={(x,y,z)eR;ax+bz=O,x+y+z=l}. Thus,
mine, IlLmx]l is equal to min {(+ab-)x+y} subject to (l+ab-)x
+y=l. In each case of (i) and (ii), the relation [=minex, llL/x[[ is
now easily examined.
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