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We shall give a brief survey of some applications of our previous
works on the uniform distribution of the zeros of the Riemann zeta func-
tion &(s) (cf. [1], [2]). The details will appear elsewhere. We assume the
Riemann Hypothesis throughout this article.

Let 7 run over the positive imaginary parts of the zeros of {(s). We
may recall the following two theorems which are special cases of the more
general theorem in the author’s [2]. The first theorem is a refinement of
Landau’s theorem (cf. [5]). We put A(x)=logp if x=p* with a prime
number p and an integer k=1 and A(x)=0 otherwise.

Theorem 1. For any positive «,
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The second theorem gives us a connection of the distribution of 7 with
a rational number.

Theorem 2. For any positive «,
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if a is rational

where we put C(oc)=71;% with the Mobius function u(q) and the Euler
@ @

function ¢(@) if a=a/q with relatively prime integers a and q=1.

We should remark that the remainder terms in Theorems 1 and 2 de-
pend on « heavily. In our applications with which we are concerned here
it is necessary and important to clarify the dependences on «. In fact, if
we follow the proofs of our theorems above in pp. 108-112 of [2], then we
get the following explicit versions of them.

Theorem 1/ Let 0<Y, <Y <T. Then
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uniformly for a positive a, where we put 6=1/log T and
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Theorem 2’. Let m and n be integers satisfying 1<m=<mn and q be
an integer =1. Suppose that 2zn’/q<Y <T. Then
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where we put e=T-%7, 3, ,=1if m=n and 4, ,=0 otherwise.
We now state what kind of applications we have in mind. Our first
application is to refine Gonek’s result in [3] and [4] which states that
= e(3Hi(r 2 )
2 log (T'/27)
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where T'>T, and « is a real number satisfying |al§£— log 22- Now using
T

T
Riemann-Siegel formula for ¢(s) (cf. 4.17.4 of [5]) and Theorems 1’ and 2’
above with g=1, we get the following theorem.

Theorem 3. Suppose that T>T, and A= 2% (20) s bounded.

log (T/27)
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where C, is the Euler constant and G(T,a) will be described below.
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and remark that R,(y) €y'*** for any pos1t1ve € and G(T, a)LT.

Our second application is to show the following theorem.

Theorem 4. Let L(s,X) be a Dirichlet L-function with a primitive
character X mod ¢q=2. Suppose that g (log T)* with an arbitrarily large
constant A. Then we have
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and C, is some positive absolute constant.
In particular, we obtain the following corollary which expresses a
connection of the distribution of ¥ with the values of L(s,X) at s=1.
Corollary. Let L(s, X) and q be given as above. Then we have
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In a similar manner we can obtain various mean value theorems like
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Here we mention only the the following theorem.
Theorem 5.
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where we put
= {y}—1% = 1-logy
C,=| = Zlogydy, Ci=| —==R(@)dy,
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and {y} is the fractional part of y.
This should be compared with Gonek’s result in [3] which states that

(L ')r=‘_1 Tlog! T+0(T log* T
OQZ‘:‘;TC(2+/LT 54, | 108" T+0(T'log" I).
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