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105. On a Problem of Kodama Concerning the Hasse.Witt
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By Harald NIEDERREITER
Austrian Academy of Sciences, Vienna, Austria

(Communicated by Shokichi IYANAGA, M. ft. A., NOV. 12, 1987)

We consider the ollowing problem posed by Prof. T. Kodma ([2],
[3]). Let f be an odd prime and but b=(f-1)/2. Then the question is
whether there exist an integer c coprime to f and n integer ] such that
the ollowing property holds"
(A) The least residue of ]c rood f is in the interval [1, b] for all n with

On_r-1, where r is the multiplicative order of c mod f.
This problem arose in connection with studies of the rank of the Hasse-

Witt matrix or hyperelliptic 2unction fields over finite fields ([1], [3], [5],
[6], [7]).

We prove in this note that if c nd ] are such that property (A) holds,
then the multiplictive order r o c mod f must be small compared to f. In
ct, we hve the following explicit bound on r.

Theorem. Let f be an odd prime and suppose there exist an integer
c coprime to f and an integer ] such that property (A)holds. Then we
have

Proof. Put e(t)--e for real . If property (A) holds, then

r= e (iv- h)
n=0/=1 -since the right-hand side represents the number of n, 0n_r-1, such that

the least residue of ]c mod f lies in [1, b]. By obvious manipulations we
get

with

For lk_f--1 we have by [4, Theorem 8.3],

and straightforward calculation yields
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e + 1 for even k,

e --1 for odd k.

Therefore

with

(f+ 1)r
2f )--r---- < fl/2 r

f_ l+fl/2
S

S--1]SI-- e +1 +k=l k =1 k =0 e( 2k+l
_1

Now
e +1 e( f-2k2f ) 1- I---__0 e(, 2k+ 1

2f )--1
hence

b-1

e 2k+l --1 = cosec
2f ;0 2f

By comparing sums and integrals, we get___
_4_- 2k+1 :-, cosec <cosec + cosecS=cosec

2f = 2f - 2x+ 1 dx
2f

<cosec
2f

+ cosec t dt= cosec + flog cot
u /(r) 2f u 4f

<cosec + f log 4_ff_f.
2f

Using sinx >_3x or 0<x <_ 1 / 6, we obtain

s< l f log f+( _) l__f -3-+-- log f< log f+

From (1)and the above bound for S the desired bound for r follows im-
mediately.

Remark 1, Our theorem implies the simpler bound

r<(-log f+ .)f/,
hence we have r=O(f/ log f) with an absolute implied constant. More
generally, the method of proof shows that if or some 0<a<l the least
residue of ]c=modf lies in [1, of] for all n with O<n<_r-1, then r=
O((1--a)-f/ log f) with an absolute implied cnstant.

Remark 2. Property (A) cannot hold for even r since then ]cz

] mod f. The problem is trivial for r=l. For r=3 and r=5 examples
of property (A) have been given by Nakahara [2]. This paper also contains
examples of property (A) where r is of the order of magnitude log fi The
bound on r in our theorem can be used to limit the search for solutions of
(A) when the prime f is given, or to bound f rom below if r is given.
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