88. Boundly Factorizable S-indecomposable Semigroups Generated by Two Elements

By Morio Sasaki and Takayuki Tamura
Iwate University and University of California, Davis
(Communicated by Shokichi Iyanaga, m. J. A., Oct. 12, 1987)

1. Introduction. A semigroup S is called \mathcal{S}-indecomposxble if it has no semilattice homomorphic image except the trivial image. In particular S is called boundly factorizable if $\cap_{n=1}^{\infty} S^{n}=\varnothing$, equivalently, for every $x \in S$ there is a positive integer n such that $x=x_{1} \cdots x_{m}, x_{i} \in S(i=1, \cdots, m)$ implies $m \leq n$. Examples of such a semigroup are idempotent-free commutative archimedean semigroups [4], the semilattice components of a free semigroup [3], and so on. To study a boundly factorizable \mathcal{S}-indecomposable semigroup S generated by two elements, we consider S as a homomorphic image of the free semigroup of rank 2. Thus our study is reduced to the study of generating relations. In this paper we will investigate basic relations which produce S. See the commutative case in [2].
2. Preliminaries. A semigroup S is called finitely factorizable if every element of S is factorized into the product of elements of S in a finitely many ways. By an irreducible basis of S we mean a non-empty subset B of S such that (i) S is generated by B, (ii) if $x \in B$ then $x \neq y z$ for all $y, z \in S$. It is known [5] that if $S \backslash S^{2}$ generates S then $S \backslash S^{2}$ is an irreducible basis.

Lemma 1 (Theorem 2.2 in [1]). If a semigroup S is boundly factorizable, then S has an irreducible basis R.

From the definition we easily have
Lemma 2. If S is boundly factorizable, then $x \neq y x, x \neq x z$ and $x \neq y x z$ for all $x, y, z \in S$. Hence S has no idempotent and S has no minimal ideal.

Assume a semigroup S is generated by two elements p, q i.e. $R=\{p, q\}$. Let $C(p)$ and $C(q)$ denote the cyclic subsemigroups of S generated by p and q respectively, and $C(p, q)$ the subsemigroup of S consisting of all elements of S which can be expressed as the product of both p and q. In [3] $C(p)$, $C(q)$ and $C(p, q)$ were called contents.

Lemma 3. [3] Every content in a semigroup is S-indecomposable.
Lemma 4. S is \mathcal{S}-indecomposable if and only if $C(p) \cap C(p, q) \neq \varnothing$ and $C(q) \cap C(p, q) \neq \varnothing$.

Let $o_{p}(v)$ denote the highest degree of the powers of p in v, for example, if $v=p^{3} q p^{2} q^{2}$, then $o_{p}(v)=3$ and $o_{q}(v)=2$.

Lemma 5. If S is a boundly factorizable S-indecomposable semigroup generated by p and $q(p \neq q)$, then
(5.1) there are positive integers m, n and elements v, w in $C(p, q)$ such that $p^{m}=v$ and $q^{n}=w$ where $m>\max \left\{o_{p}(v), o_{p}(w)\right\}$ and $n>\max \left\{o_{q}(v)\right.$, $\left.o_{q}(w)\right\}$.
(5.2) S is finitely factorizable.

Proof. (5.1) By Lemma 4, there are positive integers m, n and v, $w \in C(p, q)$ such that $p^{m}=v$ and $q^{n}=w$. Clearly $m>o_{p}(v)$. If $m \leq o_{p}(w)$ and $n \leq o_{q}(v)$, replace q^{n} in v by w; then it contradicts Lemma 2, therefore $m>o_{p}(w)$ or $n>o_{q}(v)$. Consider the case $m \leq o_{p}(w)$ and $n>o_{q}(v)$. Replacing $p^{k}(k \geq m)$ in w by $p^{k-m} v$ successively, it follows that $q^{n}=w^{\prime}, m>o_{p}\left(w^{\prime}\right)$ for some $w^{\prime} \in C(p, q)$. In the case where $o_{q}(v) \geq n$ and $o_{p}(w)<m$, we have similarly that $p^{m}=v^{\prime}, n>o_{q}\left(v^{\prime}\right), v^{\prime} \in C(p, q)$. (5.2) Let $x \in S$ and assume that $x=x_{1} \cdots x_{m}, x_{i} \in S(i=1, \cdots, m)$. Since S is generated by p and q, $x=y_{1} \cdots y_{k}$ where y_{i} is either p or $q(i=1, \cdots, k)$. By the assumption there is a positive integer n determined by x such that $m \leq k \leq n$. We can assume $n>1$. By elementary computation we see that the number of factorizations of x into the product of elements of S does not exceed

$$
\sum_{i=2}^{n} 2^{i}\left(2^{i-1}-1\right)
$$

3. Basic relations. A relation $p^{m}=v$ is called satisfactory if $m>o_{p}(v)$. A relation system $\left\{p^{m}=v, q^{n}=w\right\}$ is called satisfactory if both $p^{m}=v$ and $q^{n}=w$ are satisfactory and if $m>o_{p}(w)$ or $n>o_{q}(v)$. If "or" is replaced by "and", we say $\left\{p^{m}=v, q^{n}=w\right\}$ is very satisfactory. A satisfactory relation $p^{m}=v$ is called a basic relation if the following holds: If $p^{m^{\prime}}=v^{\prime}$ is a satisfactory relation and if $p^{m^{\prime}}=v^{\prime}$ implies $p^{m}=v$, then $m^{\prime}=m$ and $v^{\prime}=v$. A satisfactory relation system $\left\{p^{m}=v, q^{n}=w\right\}$ is called a basic relation system if the following holds: If $\left\{p^{m^{\prime}}=v^{\prime}, q^{n^{\prime}}=w^{\prime}\right\}$ is a satisfactory relation system and if $\left\{p^{m^{\prime}}=v^{\prime}, q^{n^{\prime}}=w^{\prime}\right\}$ implies $\left\{p^{m}=v, q^{n}=w\right\}$, then $m^{\prime}=m$, $v^{\prime}=v, n^{\prime}=n$ and $w^{\prime}=w$.

Lemma 6. Assume $\left\{p^{m}=v, q^{n}=w\right\}$ is very satisfastory. This is a basic relation system if and only if both $p^{m}=v$ and $q^{n}=w$ are basic relations.

Proof. The "only if" part. Assume that $p^{m^{\prime}}=v^{\prime}$ is satisfactory and $p^{m^{\prime}}=v^{\prime}$ implies $p^{m}=v$. Then $\left\{p^{m^{\prime}}=v^{\prime}, q^{n}=w\right\}$ is satisfactory and $\left\{p^{m^{\prime}}=v^{\prime}\right.$, $\left.q^{n}=w\right\}$ implies $\left\{p^{m}=v, q^{n}=w\right\}$. Hence $m^{\prime}=m, v^{\prime}=v$, so $p^{m}=v$ is a basic relation. Similarly $q^{n}=w$ is basic. The "if" part. This is immediate from the definitions.

By Lemmas 5 and 6 our study is reduced to that of basic relations.
Theorem 7. Assume $p^{m}=p^{k} v p^{l}$ is a satisfactory relation where v has the form $q v_{1} q$. This is a basic relation if and only if one of the following (1), (2), (3) holds.
(1) $k=l=0$.
(2) If $k>0$ and $l>0$, then $m=o_{p}(v)+1$ or $m=k+1=l+1$.
(3) If $k=0$ and $l>0$ or if $l=0$ and $k>0$, then $m=o_{p}(v)+1$.

Proof. Case (1). Nothing to say. Case (2) $k>0$ and $l>0$. Suppose $p^{m}=p^{k} v p^{l}$ is a basic relation. Then, for any $i(>k), p^{m-i}=p^{k-i} v p^{l}$ is not satisfactory, hence $m-i \leq o_{p}(v)$ or $m-i \leq l$ for all $i(>k)$, equivalently,
$m \leq o_{p}(v)+1<m+1$ or $m \leq l+1<m+1$, so $m=o_{p}(v)+1$ or $m=l+1$. Since $p^{m-j}=p^{k} v p^{l-j}(j<l)$ is not satisfactory, we have similarly that $m=o_{p}(v)+1$ or $m=k+1$. Thus we have the conclusion. Conversely, assume $m=o_{p}(v)$ +1 and let $v^{\prime}=q v_{1}^{\prime} q$. If $p^{m^{\prime}}=p^{k^{\prime}} v^{\prime} p^{l^{\prime}}$ is satisfactory and if $p^{m^{\prime}}=p^{k^{\prime}} v^{\prime} p^{l^{\prime}}$ implies $p^{m}=p^{k} v p^{l}$, then $m-m^{\prime}=k-k^{\prime}+l-l^{\prime}, k-k^{\prime} \geq 0, l-l^{\prime} \geq 0, v^{\prime}=v$. On the other hand $m^{\prime}>o_{p}\left(p^{k^{\prime}} v p^{l^{\prime}}\right)=\max \left\{k^{\prime}, o_{p}(v), l^{\prime}\right\}=m-1$, whence $0 \leq m-$ $m^{\prime}<1$, so $m=m^{\prime}, k=k^{\prime}, l=l^{\prime}$. Hence $p^{m}=p^{k} v p^{l}$ is basic. Assume that $m=k+1=l+1$ and that $p^{m^{\prime}}=p^{k^{\prime}} v^{\prime} p^{l^{\prime}}$ is satisfactory and if $p^{m^{\prime}}=p^{k^{\prime}} v^{\prime} p^{l^{\prime}}$ implies $p^{m}=p^{k} v p^{l}$. For the same reason as above it holds that $m^{\prime}>k^{\prime}$ and $m^{\prime}>l^{\prime}$. This implies that $l^{\prime}=\left(k-k^{\prime}\right)+m^{\prime}-1<m^{\prime}$ and $k^{\prime}=\left(l-l^{\prime}\right)+m^{\prime}-1<m^{\prime}$, and hence $0 \leq k-k^{\prime}<1$ and $0 \leq l-l^{\prime}<1$; then we have $k=k^{\prime}, l=l^{\prime}, m=m^{\prime}$, thus $p^{m}=p^{k} v p^{l}$ is basic. Case (3). $k=0$ and $l>0$. Suppose $p^{m}=v p^{l}$ is a basic relation. Since $p^{m}=v p^{l}$ is satisfactory, it follows that $m>o_{p}\left(v p^{l}\right)$ $=\max \left\{o_{p}(v), l\right\}$ hence $m>o_{p}(v)$ and $m>l$. If $m>o_{p}(v)+1$, then $m-1$ $>\max \left\{o_{p}(v), l-1\right\}=o_{p}\left(v p^{l-1}\right)$. It follows that $p^{m-1}=v p^{l-1}$ is satisfactory. However this contradicts the assumption that $p^{m}=v p^{l}$ is basic. Therefore $m \leq o_{p}(v)+1$, so $m=o_{p}(v)+1$. Similarly we have the same result in case $l=0$ and $k>0$. Conversely, let $m=o_{p}(v)+1$. If $p^{m^{\prime}}=v^{\prime} p^{l^{\prime}}$ is satisfactory and if $p^{m^{\prime}}=v^{\prime} p^{l^{\prime}}$ implies $p^{m}=v p^{l}$, then $m-m^{\prime}=l-l^{\prime} \geq 0, v^{\prime}=v$ and $m^{\prime}>$ $\max \left\{o_{p}\left(v^{\prime}\right), l^{\prime}\right\}=m-1$. Hence $m=m^{\prime}, l=l^{\prime}$ and $p^{m}=v p^{l}$ is basic. The case $l=0$ and $k>0$ is similarly treated.

A boundly factorizable \mathcal{S}-indecomposable semigroup generated by two elements p, q is a homomorphic image of the free semigroup $F(p, q)$ relative to a basic relation system $\left\{p^{m}=u, q^{n}=w\right\}$ where $p^{m}=u$ and $q^{n}=w$ satisfy the condition given by Theorem 7 .

References

[1] S. Kasahara: A note on semigroups with a base and its application to the theory of education. Math. Japonicae, vol. 6, no. 2, pp. 45-57 (1962).
[2] M. Petrich: On the structure of a class of commutative semigroups. Czech. Math. J., 14, 147-153 (1964).
[3] T. Tamura: Another proof of a theorem concerning the greatest semilattice decomposition of a semigroup. Proc. Japan Acad., 40, 777-780 (1964).
[4] _-: Construction of trees and commutative archimedean semigroups. Math. Nachr., 36, 255-287 (1968).
[5] -: The Theory of Semigroups. Kyoritsu Shuppan (1972) (in Japanese).

