86. Information and Statistics. II

By Yukiyosi Kawada
Faculty of Science, University of Tokyo
(Communicated by Shokichi Iyanaga, m. J. a., Oct. 12, 1987)

This is a continuation of Kawada [0]. We use the same notations.
II. L-sets and informations. 1. Let $\boldsymbol{p}=\left(p_{1}, \cdots, p_{m}\right)$ and $\boldsymbol{q}=\left(q_{1}, \cdots\right.$, q_{m}) be probability distributions. We call the set

$$
\begin{equation*}
\boldsymbol{L}(\boldsymbol{p}, \boldsymbol{q})=\left\{(x, y) \mid x=\sum_{k=1}^{m} \alpha_{k} p_{k}, y=\sum_{k=1}^{m} \alpha_{k} \alpha_{k}, 0 \leqq \alpha_{k} \leqq 1, k=1, \cdots, m\right\} \tag{9}
\end{equation*}
$$

the Liapunov-set (simply L-set) of the pair ($\boldsymbol{p}, \boldsymbol{q}$). See Kudo [6], [7].
$L(p, q)$ has the following properties:
(i) $L(p, q)=\Delta$ (the diagonal segment joining $(0,0)$ and $(1,1))$ if and only if $p=q$.
(ii) $L(p, q)$ contains the points $(0,0)$ and $(1,1)$.
(iii) $L(p, q)$ is contained in the square $[0,1] \times[0,1]$.
(iv) $L(p, q)$ is a symmetric convex set with the center $(1 / 2,1 / 2)$.
(v) Let the indices of (p_{k}, q_{k}) be so substituted that

$$
0 \leqq\left(q_{1} / p_{1}\right) \leqq\left(q_{2} / p_{2}\right) \leqq \cdots \leqq\left(q_{m} / p_{m}\right) \leqq \infty
$$

holds. Then

$$
L(\boldsymbol{p}, \boldsymbol{q})=\{(x, y) \mid \varphi(x) \leqq y \leqq \psi(x), 0 \leqq x \leqq 1\}
$$

where $\varphi(x)$ is a polygon with $m+1$ vertices

$$
(0,0),\left(p_{1}, q_{1}\right),\left(p_{1}+p_{2}, q_{1}+q_{2}\right), \cdots,\left(p_{1}+\cdots+p_{m-1}, q_{1}+\cdots+q_{m-1}\right),(1,1)
$$

and $\psi(x)$ is a polygon with $m+1$ vertices

$$
\begin{aligned}
& (0,0),\left(p_{m}, q_{m}\right),\left(p_{m}+p_{m-1}, q_{m}+q_{m-1}\right), \cdots, \\
& \left(p_{m}+p_{m-1}+\cdots+p_{2}, q_{m}+q_{m-1}+\cdots+q_{2}\right),(1,1) .
\end{aligned}
$$

Theorem 6. A function $I(p, q)$ for any pair of finite probability distributions (p, q) is an information if and only if
(i) $L(p, q)=\Delta \Rightarrow I(p, q)=0$,
(ii) $L(p, q)=L\left(p^{\prime}, q^{\prime}\right) \Rightarrow I(p, q)=I\left(p^{\prime}, q^{\prime}\right)$,
(iii) $L(p, q) \supseteq L\left(p^{\prime}, q^{\prime}\right) \Rightarrow I(p, q)>I\left(p^{\prime}, q^{\prime}\right)$.

Namely, an information I is characterized by the property that I is a monotone functional of the family of all L-sets with $I=0$ for $L=\Delta$.
2. (i) We can characterize a fundamental information I geometrically as

$$
\begin{equation*}
I_{K}(\boldsymbol{p}, \boldsymbol{q})=\int_{C} K(d \varphi / d x) d x \tag{10}
\end{equation*}
$$

where $K(x)$ is a non-negative differentiable function with $K(1)=K^{\prime}(1)=0$, $K^{\prime \prime}(x)>0, \varphi(x)$ is the polygon defined as above and the integral is the curvilinear integral along the polygon $C: y=\varphi(x)$.

In particular, if we put

$$
K(x)=\sqrt{1+x^{2}}-(x+1) / \sqrt{2},
$$

then $I_{K}(\boldsymbol{p}, q)=($ the length of the polygon $C)-\sqrt{2}$.
Thus we call the information (10) of the type of arc-length.
We can define several other types of informations geometrically.
(ii) Type of area of L-sets. Let

$$
\begin{equation*}
I_{\Delta}(p, q)=\text { the area of } L \text {-set } L(p, q) \tag{11}
\end{equation*}
$$

Then I_{A} is an information by Theorem 6. We can write also

$$
I_{A}(\boldsymbol{p}, \boldsymbol{q})=\left(\sum_{k=1}^{m} \sum_{l=1}^{m}\left|p_{k} q_{l}-p_{l} q_{k}\right|\right) / 2 .
$$

If we take a continuous function $f(x, y)$ defined on $0 \leqq x \leqq 1,0 \leqq y \leqq 1$ and positive for $0<x<1,0<y<1$, then

$$
\begin{equation*}
I_{A, f}(\boldsymbol{p}, \boldsymbol{q})=\iint_{\boldsymbol{L}(p, q)} f(x, y) d x d y \tag{12}
\end{equation*}
$$

is also an information by Theorem 6. We call these informations $I_{A, f}$ of the tpye of area.
(iii) Type of breadth of L-sets. Let $B_{\theta}(L)$ be the breadth of the convex set $L(\boldsymbol{p}, \boldsymbol{q})$ in the direction θ with the x-axis, and $f(\theta)(0 \leqq \theta<\pi)$ be any positive continuous function. Then

$$
\begin{equation*}
I_{B, f}(\boldsymbol{p}, \boldsymbol{q})=\frac{1}{\pi} \int_{0}^{\pi}\left(B_{\theta}(L)-B_{\theta}(\Delta)\right) f(\theta) d \theta \tag{13}
\end{equation*}
$$

is an information by Theorem 6. We call these informations $I_{B, f}$ of the type of breadth. Notice that $d(\boldsymbol{p}, \boldsymbol{q})=B_{3 \pi / 4}(L)$.
3. Now we introduce the concept of completeness of a family of informations after Kudō [7].

Definition 3. A family of informations $\left\{I_{\omega}(p, q) \mid \omega \in \Omega\right\}$ is called weakly complete if $I_{\omega}(\boldsymbol{p}, \boldsymbol{q})=I_{\omega}\left(\boldsymbol{p}^{\prime}, \boldsymbol{q}^{\prime}\right)$ for all $\omega \in \Omega$ implies $\boldsymbol{L}(\boldsymbol{p}, \boldsymbol{q})=\boldsymbol{L}\left(\boldsymbol{p}^{\prime}, \boldsymbol{q}^{\prime}\right)$, and is called strongly complete if $I_{\omega}(\boldsymbol{p}, \boldsymbol{q}) \geqq I_{\omega}\left(\boldsymbol{p}^{\prime}, \boldsymbol{q}^{\prime}\right)$ for all $\omega \in \Omega$ implies $\boldsymbol{L}(\boldsymbol{p}, \boldsymbol{q})$ $\supset L\left(p^{\prime}, q^{\prime}\right)$.

Any strongly complete family is evidently weakly complete, but the converse does not hold in general as shown by a counter example by K . Iseki in [7].

Theorem 7. (i) The family of informations of the type of area:

$$
\left\{I_{A}^{(i, j)}(\boldsymbol{p}, \boldsymbol{q})=\iint_{L(p, q)} x^{i} y^{j} d x d y \mid i, j=0,1,2, \cdots\right\}
$$

is weakly complete, but not strongly complete.
(ii) The family of informations of the type of area

$$
\left\{I_{A, f}(\boldsymbol{p}, \boldsymbol{q})=\iint_{\boldsymbol{L}(p, q)} f(x, y) d x d y \mid f(x, y) \geqq 0 \text { and continuous }\right\}
$$

is strongly complete.
Theorem 8. (i) The family of informations of the type of arclength (i.e. fundamental informations)

$$
\left\{I^{2}(\boldsymbol{p}, \boldsymbol{q}) \mid \alpha<\lambda<\alpha+\varepsilon\right\} \quad(\alpha>0, \varepsilon>0)
$$

and

$$
\left\{I^{-\mu}(\boldsymbol{p}, \boldsymbol{q}) \mid \alpha-\varepsilon<\mu<\alpha\right\} \quad(1 / 2 \geqq \alpha>\varepsilon>0)
$$

are both weakly complete, but not strongly complete.
(ii) The family of informations of the type of arc-length

$$
\left\{I_{K}(\boldsymbol{p}, \boldsymbol{q})=\sum_{k=1}^{m} p_{k} K\left(q_{k} / p_{k}\right) \mid K(1)=K^{\prime}(1)=0, K^{\prime \prime}(x)>0 \text { for } x>0\right\}
$$

is strongly complete.
III. Applications to statistics. 1. H. Akaike [1], [2] established the theory of AIC (Akaike information criterion), whose direct application gives a method of model selection from the standpoint of prediction. There he used as a basic tool the Kullback-Leibler information $I_{K L}$. Here we shall show that a similar results can be obtained if we use a regular information I, which we shall define below, instead of $I_{K L}$.

Definition 4. An information I is called regular if the following two conditions (A) and (B) hold.
(A) Let $\boldsymbol{p}=\left(p_{1}, \cdots, p_{m}\right), \boldsymbol{q}=\left(q_{1}, \cdots, q_{m}\right)$ and $\boldsymbol{q}^{0}=\left(q_{1}^{0}, \cdots, q_{m}^{0}\right)$ be finite probability distributions, and put

$$
\begin{aligned}
& p_{k}=q_{k}^{0}+u_{k}, \quad q_{k}=q_{k}^{0}+v_{k} \quad(k=1, \cdots, m) \\
& u_{1}+\cdots+u_{m}=0, \quad v_{1}+\cdots+v_{m}=0
\end{aligned}
$$

For $\left|u_{k}\right|<\varepsilon,\left|v_{k}\right|<\varepsilon(k=1, \cdots, m) I(p, q)$ is three times differentiable with respect to ($u_{1}, \cdots, u_{m-1}, v_{1}, \cdots, v_{m-1}$) and

$$
\begin{equation*}
I(\boldsymbol{p}, \boldsymbol{q})=\frac{\alpha}{2} \sum_{k=1}^{m} \frac{1}{q_{k}^{0}}\left(u_{k}-v_{k}\right)^{2}+R, \quad R=0\left(\varepsilon^{3}\right) \tag{14}
\end{equation*}
$$

holds, where α is a positive constant. α is called the invariant of I.
(B) If we fix q then for any p the inequality

$$
0 \leqq I(p, q) \leqq c(\boldsymbol{q})
$$

holds, where $c(q)$ is a certain constant. By (8) any differentiable fundamental information satisfies the condition (A), and we can easily verify that $I^{\lambda}(-(1 / 2)<\lambda<\infty)$ satisfies the condition (B).

Let $\boldsymbol{q}^{0}=\left(q_{1}^{0}, \cdots, q_{m}^{0}\right)$ be a probability distribution on m events (E_{1}, \cdots, E_{m}). Suppose that the events E_{1}, \cdots, E_{m} occur N_{1}, \cdots, N_{m} times respectively in $n\left(n=N_{1}+\cdots+N_{m}\right)$ independent trials, and put

$$
\begin{equation*}
\boldsymbol{P}=\left(N_{1} / n, \cdots, N_{m} / n\right) \tag{15}
\end{equation*}
$$

Theorem 9. Let I be a regular information with the invariant α. Then as $n \rightarrow \infty$ the random variable $(2 n / \alpha) I\left(\boldsymbol{p}, \boldsymbol{q}^{0}\right)$ converges in distribution to the chi-square distribution χ_{m-1}^{2} with $m-1$ degrees of freedom. Moreover,

$$
\lim _{n \rightarrow \infty}(2 n / \alpha) E\left(I\left(\boldsymbol{P}, \boldsymbol{q}^{0}\right)\right)=m-1
$$

holds, where E means the expectation of the random variable.
2. Now suppose that we are given a family of distributions $q(\theta)$ $=\left(\boldsymbol{q}_{1}(\theta), \cdots, \boldsymbol{q}_{m}(\theta)\right), \theta=\left(\theta_{1}, \cdots, \theta_{r}\right) \quad\left(\theta \in \Omega^{(r)}\right)$ with r continuous parameters. We assume that the unknown true probability distribution q^{0} is contained in this family as $\boldsymbol{q}^{0}=\boldsymbol{q}\left(\theta^{0}\right), \theta^{0}=\left(\theta_{1}^{0}, \cdots, \theta_{r}^{0}\right)$. We define the random probability distribution \boldsymbol{P} by (15) after n independent trials. For this value \boldsymbol{P}, choose the value of parameters $\hat{\theta}=\left(\hat{\theta}_{1}, \cdots, \hat{\theta}_{r}\right)$ such that $I(\boldsymbol{P}, \boldsymbol{q}(\theta))$ takes its minimum at $\theta=\hat{\theta}$. We can consider $\hat{\theta}$ also as a random vector.

Theorem 10. As $n \rightarrow \infty$ the random vector.

$$
\sqrt{n}\left(\hat{\theta}_{1}-\theta_{1}^{0}, \cdots, \hat{\theta}_{r}-\theta_{r}^{c}\right)
$$

converges in distribution to the r-dimensional normal distribution $N((0, \cdots$, $\left.0), \alpha I^{-1}\right)$ with the mean vector $(0, \cdots, 0)$ and the variance matrix αI^{-1}, where

$$
\begin{aligned}
& I=\left(\left(\frac{\partial^{2} I}{\partial \theta_{i} \partial \theta_{j}}\right)_{\theta=\theta 0}\right)_{i, j=1, \ldots, r}=\alpha Q \cdot{ }^{t} Q, \\
& Q=\left(q_{j}^{(i)} / \sqrt{q_{j}}\right)_{\theta=\theta 00}, \quad q_{j}^{(i)}=\partial q_{j} / \partial \theta_{i} .
\end{aligned}
$$

Theorem 11. As $n \rightarrow \infty$ the random variable $(2 n / \alpha)\left(I\left(\boldsymbol{P}, q^{0}\right)-I(\boldsymbol{P}, \boldsymbol{q}(\hat{\theta}))\right)$ converges in distribution to the chi-square distribution χ_{r}^{2} with r degrees of freedom, and $(2 n / \alpha)(I(\boldsymbol{P}, \boldsymbol{q}(\hat{\theta}))$ itself converges in distribution to the chisquare distribution χ_{m-1-r}^{2} with $m-1-r$ degrees of freedom.
3. Now let $q^{0}=\left(q_{1}^{0}, \cdots, q_{m}^{0}\right)$ be unknown true probability distribution of the events ($E_{1}, \cdots E_{m}$), and suppose that we obtain the events E_{1}, \cdots, E_{m}, n_{1}, \cdots, n_{m} times respectively in $n\left(n=n_{1}+\cdots+n_{m}\right)$ independent trials. Put $\boldsymbol{p}^{0}=\left(n_{1} / n, \cdots, n_{m} / n\right)$.

Let $\Omega^{(r)}=\left\{\boldsymbol{q}(\theta)=\left(q_{1}(\theta), \cdots, q_{m}(\theta)\right\}\right.$ be a model for \boldsymbol{q}^{0} which contains $\boldsymbol{q}^{0}=\boldsymbol{q}\left(\theta^{0}\right)$. Assume that I is a regular information, and $\hat{\theta}$ is the value of θ in a neighbourhood of θ^{0} such that $I\left(\boldsymbol{p}^{0}, \boldsymbol{q}(\hat{\theta})\right)$ is the minimum. Now define (16)

$$
A I C\left(\Omega^{(r)}\right)=(2 n / \alpha) I\left(p^{0}, q(\hat{\theta})\right)+2 r
$$

after Akaike [1], [2]. Akaike's method of selection of model is as follows.
Suppose we are given several models for q^{0}. i.e. $\Omega^{\left(r_{1}\right)}, \cdots, \Omega^{\left(r_{s}\right)}$. After n independent trials we obtain \boldsymbol{p}^{0} as above. Compare the values $A I C\left(\Omega^{\left(r_{t}\right)}\right)$ ($t=1, \cdots, s$). Choose the model $\Omega^{\left(r_{t}\right)}$ for which $\operatorname{AIC}\left(\Omega^{\left(r_{t}\right)}\right)$ takes the minimum among s values.

This method depends on the following theorem in prediction theory. Namely, we repeat n^{*} new independent trials, for which the events E_{1}, \cdots, E_{m} occur $N_{1}^{*}, \cdots, N_{m}^{k}$ times $\left(n^{*}=N_{1}^{*}+\cdots+N_{m}^{*}\right)$ respectively. Put

$$
\boldsymbol{P}^{*}=\left(N_{1}^{*} / n^{*}, \cdots, N_{m}^{*} / n^{*}\right)
$$

The mean value $E^{*}\left(I\left(\boldsymbol{P}^{*}, \boldsymbol{q}(\hat{\theta})\right)\right.$ may be called the mean information in prediction.

Theorem 12.

$$
A I C\left(\Omega^{(r)}\right)=(2 n / \alpha) E^{*}\left(I\left(\boldsymbol{P}^{*}, \boldsymbol{q}(\hat{\theta})\right)+R_{1}+R_{2}\right.
$$

where

$$
R_{1}=(2 n / \alpha)\left(I\left(\boldsymbol{p}^{0}, \boldsymbol{q}^{0}\right)-E^{*}\left(I\left(\boldsymbol{P}^{*}, \boldsymbol{q}^{0}\right)\right)\right.
$$

depends only on the value \boldsymbol{p}^{0}, and R_{2} is a random variable with $E\left(R_{2}\right)=0$.

Reference*)

[0] Y. Kawada: Information and statistics. I. Proc. Japan Acad., 63A, 281-284 (1987).

[^0]
[^0]: *) Other references are given in [0].

