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1. Introduction. We consider a bifurcation problem of heteroclinic
orbits for a family of ODEs on R. Suppose there are two heteroclinic
orbits, one of which connects saddle points O and O, the origin, and the
other connects O and O. See Figure (a) below.

0

(a)
Figure

0

(b)

In general, these heteroclinic orbits are broken by perturbations, since they
are structurally unstable. We will give below, under some non-degeneracy
assumptions, a condition of parameter values for which each heteroclinic
orbit persists, and also a condition 2or which there is a new heteroclinic
orbit (Figure (b)) connecting O nd 0. given by joining original heteroclinic
orbits near the origin O.

Recent developement o the theory of Melnikiov functions and the
exponential dichotomy [3] invoked many works on bifurcations of homo-
clinic (heteroclinic) orbits, most oi which are related to the codimension 2
bifurcation o the vector field singularities ([2], [4] and references therein).
From bifurcation theoretical point of view, it seems more difficult to treat
bifurcations o homoclinic and heteroclinic orbits than those o equilibria
or periodic orbits, since the 2ormers are global ones.

2. Assume smooth ODE family ’2= f(x)+g(x, p) (x e Rn, e R) with
f(0)=g(0,/)=g(x, 0)=0, has three saddle points, O1(/), 0(/) and the origin
O. The eigenvalues o the Jacobian matrix at each equilibrium 0 [resp.



No. 8] Bifurcation of Heteroclinic Orbits 299

O()] are assumed to be (/), -p(Z) and -(g) [resp. (), -p(g) and
-(p)] (i= 1, 2, l<_k<_n--2) satisfying

,()0 --p(p) e((p)) [resp. ,()0 p(z) e(V(Z))].
At =0, we suppose that there exist two heteroelinie orbits h(t) (i=1, 2)
connecting 0() and 0 for i=1, and 0 and O(a)for i=2. Then we can
show that the linear ODE 2=Df(h(t)). z has the exponential dichotomy on
both intervals R_=(--,0] and R+=[0, +), that is, the fundamental
solution matrix X(t) satisfies

[X(t).P.XT(s)[Ke-(t- or any s, t e R with st,
and

[X($).(I--P).XT(s)]Ke-(-t for any s, e R with st,
where K and a are positive constants, and P are projection matrices.

Further, we make the following assumptions"
(G1) Heteroelinie orbits are generic in the sense that, as t+, each o

them approaches to an equilibrium along the eigenspaee assoeiated
with p(p) [resp. p(p)].

( 0( .(h(,o, (i=,,

and hese integral vectors are linearly independent, where 0() is a bounded
solution of the linear ODE }=--Df(h(t))..
(Gg) or sueiently small and all , wih 1-2,

() e((p)) p(p), e(J(p)).
Under the above hypotheses except (G3), we can prove the following

theorem using the standard theory on the exponential dichotomy (cf. [2],
[5]).

Theorem 1. In a neighbo.rhood of =0, there exist two codimension
1 hypersurfaces M (i=1,2) intersecting transversally at =0, in which
each corresponds to a parameter value having a hetoclinic orbit con-
necting 0 and 0().

Moreover, under (G3) as well as (G1) and (G2), we can prove"

Theorem 2. There exists a co.dimension 1 hypersurfaceM co.ntaining
p=0 at its boundary, in which each corresponds to a parameter value
having a heteroclinic orbit connecting O(p) and O(p). Furthermore,

(a) if (0) p(O) then M is tangent to M at
(b) if ,(0)=p(0) and d/dpl,=o{,(p)-p(p)}%O then M2 is tangent to

neither of M.
(c) if ,(O)p(O) then Ms is tangent to M at =0.
Remark. (1) The assumptions (G1)-(G3) are open conditions, hence

our theorems show a generic codimension 2 bifurcation of such heteroclinic
orbits.

(2) The bounded solution O(t) is unique up to multiplication by
a constant.

(3) Without losing generality, we can assume that p=(c, 2)eR
X R-’ and that each M [resp, Ms] is given as the graph of c=c(2) [resp.
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c=c()] near =0. In what follows we use such (c, ).
(4) The conclusions of Theorems 1 and 2 are also valid for the case

that some of the saddle points coinside. Such cases correspond to those
of homoclinic orbits. For example, in case O, =0, we can show that there
are two homcclinic orbits with saddle points 0 and O (=0) respectively,
besides the original heteroclinic orbits, and that the bifurcation set of each
homcclinic orbit is tangent to one of the bifurcation set of hetercclinic
orbits at/=0, if the first two eigenvalues , and -p of the saddle point of
the homoclinic orbit satisfies ,:/=p.

3. In order to prove Theorem 2, we need a lemma describing the
behavior of orbits near the saddle point O. Let Z [resp. X] be a plane
at the distance of sufficiently small >0 from O, and transverse to the
heteroclinic orbit h(t) [resp. h(t)] when /=0. For small /:/=0, Wu(O(/))
X, defines a point x(/). Set a(/) be the distance of x(/) and W’(O).
Similarly, let the point x’(/) be the intersection of the orbit starting x(/)
and Xu, and define a’(Z) be the distance of x’(/) and W=(O).

Lemma. Under the above notations, it holds that
c’(t) A([) (/)()/(")

such that, recalling/=(c, ,),

A(O)# O and lira OA.a/=0 or p(c(), ) >1.
() @ (c(,),,)

This lemma can be proved using the CMinearization theorem by
Belitskii [1] under (G3). Our Theorem 2 is obtained by this lemma with
he aid of the exponential dichotomy technique.

4. It is often the case hat the existence of a heeroclinic (homoclinic)
orbit automatically implies he existence of another heteroclinic (homo-
clinic) orbit; for instance, under the presence of a symmetry. The method
to prove Theorems I and 2 can be used for such cases. Especially, we have
the following theorem assuming that x R and/ R for simplicity.

Theorem 3. Suppose there is a homoclinic orbit o/ the origin 0 at
/=0, then it persists on a curve Mo passing through the origin given as a

gaph o/ a unction c=c0(,) in a neighborhood o./0 in the parameter space.
Moreover, i (0)=p(0), d/d]=o{(Co(), )-p(Co(), )}#=0, and A(O)# I, then
there exists a curve M branching off /rom /=0 tangentially to. Mo, which
consists o parameter values coresponding to homoclinic orbits rounding

twice along the original homoclinic orbit.
Remark. (1) This theorem was obtained by Yanagida [7] but his

proof is insufficient at the point that he used the C-linearization, hence his

bifurcation analysis is not rigorous as i is.
(2) As for the bifurcation of homoclinic orbits, there is a remarkable

theorem by Sil’nikov [6] which shows the existence of the chaotic dynamics

near a homoclinic orbit of the saddle-focus ype. On the other hand,
Theorem 3 gives a bifurcation of a homoclinic orbit of the saddle-node
ype.
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We can obtain similar theorems for various kinds of homoclinic and
heteroclinic orbits under the Z-symmetry.

The details of the results in this paper as well as proofs will appear
elsewhere.
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