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1. Introduction. We consider a bifurcation problem of heteroclinic
orbits for a family of ODEs on R". Suppose there are two heteroclinic
orbits, one of which connects saddle points O, and O, the origin, and the
other connects O and O,. See Figure (a) below.

(a) (b)
Figure

In general, these heteroclinic orbits are broken by perturbations, since they
are structurally unstable. We will give below, under some non-degeneracy
assumptions, a condition of parameter values for which each heteroclinic
orbit persists, and also a condition for which there is a new heteroclinic
orbit (Figure (b)) connecting O, and O, given by joining original heteroclinic
orbits near the origin O.

Recent developement of the theory of Melnikiov functions and the
exponential dichotomy [3] invoked many works on bifurcations of homo-
clinic (heteroclinic) orbits, most of which are related to the codimension 2
bifurcation of the vector field singularities ([2], [4] and references therein).
From a bifurcation theoretical point of view, it seems more difficult to treat
bifurcations of homoclinic and heteroclinic orbits than those of equilibria
or periodic orbits, since the formers are global ones.

2. Assume a smooth ODE family &= f(x)+ g(x, ) (x € R*, p € R*) with
f(0)=9(0, ) =g(x, 0)=0, has three saddle points, O,(x), O,(x) and the origin
O. The eigenvalues of the Jacobian matrix at each equilibrium O [resp.
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O[] are assumed to be v(y), —p() and —n*() [resp. v (), —p, () and
—¥(w] ¢=1,2,1<k<n—2) satisfying
w(1) >0> — p(p) > — Re(*(w) [resp. v,(p) >0> —p, (1) > — Re(n¥(w)].
At ¢=0, we suppose that there exist two heteroclinic orbits 4,(f) (i=1,2)
connecting O,(¢) and O for i=1, and O and Oy(u) for i=2. Then we can
show that the linear ODE 2=D f(h,(t)) -z has the exponential dichotomy on
both intervals R_.=(—o,0] and R,=I[0, + =), that is, the fundamental
solution matrix X,(¢) satisfies
| X, () -P, - X7 (s)|<Ke=¢-® for any s, t € R, with s<{t,
and
| X,)-U—-P,) - X7 (s)|<Ke=¢-n for any s, t € R, with s>t,
where K and « are positive constants, and P, are projection matrices.
Further, we make the following assumptions :
(G1) Heteroclinic orbits are generic in the sense that, as t— -4 oo, each of
them approaches to an equilibrium along the eigenspace associated
with —p(y) [resp. —p,(w)].

G2) [ 0@ oo, 0ds0, (=12,

and these integral vectors are linearly independent, where ¢%(s) is a bounded
solution of the linear ODE 2= —‘Df(h,(t))-4.
(G3) For u sufficiently small and all 7, k with 1<j<k<n—2,

w(p) — Re(* (1)) #= — p(1), — Re(y(p)).

Under the above hypotheses except (G3), we can prove the following
theorem using the standard theory on the exponential dichotomy (cf. [2],
[5D.

Theorem 1. In a neighborhood of u=0, there exist two codimension
1 hypersurfaces M, (i=1,2) intersecting transversally at p=0, in which
each u corresponds to a parameter value having a heteroclinic orbit con-
necting O and O(y).

Moreover, under (G3) as well as (G1) and (G2), we can prove :

Theorem 2. There exists a codimension 1 hypersurface M, containing
©=0 at its boundary, in which each p corresponds to a parameter value
having a heteroclinic orbit connecting O,(n) and Ow). Furthermore,

(a) if W(0)<p(0) then M, is tangent to M, at p=0.

(b) if v(0)=p(0) and d/dy|,.,{v() —p(W}x0 then M,, is tangent to
neither of M,.

(e) f v(0)>p(0) then M,, is tangent to M, at u=0.

Remark. (1) The assumptions (G1)-(G8) are open conditions, hence
our theorems show a generic codimension 2 bifurcation of such heteroclinic
orbits.

(2) The bounded solution §¢'(f) is unique up to multiplication by
a constant.

(8) Without losing generality, we can assume that p=(c,)eR
X R*-' and that each M, [resp, M,,] is given as the graph of ¢=¢,(2) [resp.
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c¢=c()] near 1=0. In what follows we use such (¢, 2).

(4) The conclusions of Theorems 1 and 2 are also valid for the case
that some of the saddle points coinside. Such cases correspond to those
of homoclinic orbits. For example, in case O,=0,, we can show that there
are two homoclinic orbits with saddle points O and O, (=0,) respectively,
besides the original heteroclinic orbits, and that the bifurcation set of each
homoclinic orbit is tangent to one of the bifurcation set of heteroclinic
orbits at 4=0, if the first two eigenvalues v and —p of the saddle point of
the homeclinic orbit satisfies v==p.

3. In order to prove Theorem 2, we need a lemma describing the
behavior of orbits near the saddle point O. Let X, [resp. 2,] be a plane
at the distance of sufficiently small 6>0 from O, and transverse to the
heteroclinic orbit &,(t) [resp. hy,(t)] when p=0. For small g0, W*(O,(»))
N2, defines a point 2(y). Set a(y) be the distance of x(x) and W*(O).
Similarly, let the point /(x) be the intersection of the orbit starting x(x)
and Y,, and define o’(y) be the distance of #'(x) and W*(0).

Lemma. Under the above notations, it holds that

a'(p)=A(g) - a(p)r 1w
such that, recalling p=(c, 2),
L 0A p(e,(2), 2)
A(0)£0 and clalflmﬁ a*”=0 for oD >1.

This lemma can be proved using the C'-linearization theorem by
Belitskii [1] under (G8). Our Theorem 2 is obtained by this lemma with
the aid of the exponential dichotomy technique.

4. It is often the case that the existence of a heteroclinic (homoclinic)
orbit automatically implies the existence of another heteroclinic (homo-
clinic) orbit ; for instance, under the presence of a symmetry. The method
to prove Theorems 1 and 2 can be used for such cases. Especially, we have
the following theorem assuming that « € R® and x € R® for simplicity.

Theorem 3. Suppose there is a homoclinic orbit of the origin O at
=0, then it persists on a curve M, passing through the origin given as a
graph of a function c=c,(2) in a neighborhood of O in the parameter space.
Moreover, if v(0)=p(0), d/d2],.,{v(ci(D), D) —p(c,(2), D}#0, and A(0)+1, then
there exists a curve M branching off from p=0 tangentially to M,, which
consists of parameter values corresponding to homoclinic orbits rounding
twice along the original homoclinic orbit.

Remark. (1) This theorem was obtained by Yanagida [7] but his
proof is insufficient at the point that he used the C’-linearization, hence his
bifurcation analysis is not rigorous as it is.

(2) As for the bifurcation of homoclinic orbits, there is a remarkable
theorem by Sil’'nikov [6] which shows the existence of the chaotic dynamics
near a homoclinic orbit of the saddle-focus type. On the other hand,
Theorem 3 gives a bifurcation of a homoclinic orbit of the saddle-node

type.
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We can obtain similar theorems for various kinds of homoclinic and
heteroclinic orbits under the Z,-symmetry.

The details of the results in this paper as well as proofs will appear
elsewhere.
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