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64. A Generalization of Lefschetz Theorem
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We improve the classical Lefschetz theorem as follows"
Theorem. Let A be an effective ample divisor on an algebraic variety

V defined over C of dimension n, let v be a point on V-A such that V-A
--v is smooth and set U= V-v. Then the relative homotopy group z(U, A)
vanishes for every kn.

Using Morse theory, we prove this theorem by modifying Andreotti-
Frankel method (cf. [1], [2]). First, replacing A by mA for m>>l if
necessary, we may assume that A is very ample. Thus VP and A--
V fS for some hyperplane S in P. We fix an affine linear coordinate of
P-SC and let / denote the Euclid distance with respect to this
coordinate. Set N={x e V--AI(x, v)<=R} and U=V--N for each R>O.
If r>0 is small enough, the function d(x)=3(x, v) has no critical point in

N4r. Hence U, and U are deformation retracts of U.
For a point p in P-S--V, let f be the function ,(x, p) on U--A. By

[2; Theorem 6.6], f has no degenerate critical points for almost all p. In
particular, we can choose p such that (p, v)r. Set T=A U{x e V--A
f(x)>=a2}. Then TUTcU for any L>>I. Using Morse theory
similarly as in [2; p. 42], we infer that T has the homotopy type of T
with finitely many cells of real dimension n+l attached, so we obtain
(T, A) z(T, A)(1} for kn. On the other hand,, the composition
=(U, A)--u(T, A)--(U, A)(U, A) is bijective. Hence (U, A) is
trivial. Thus we complete the proof.

Corollary. Let L be the total space of an ample line bundle on a com-
pact complex manifold M and let X be a compact analytic subspace of L of
pure dimension n--dim M. Then, for the natural map f" X--M,

1) (f)" (X)--z(M) is bi]ective if kn and is sur]ective if k=n.
2) H(f)" H(X Z)--H(M Z) is bijective if kn and is surjective if

]c--no

3) H(f)" H(M Z)-H(X Z) is bijective if kn and is in]ective
with torsion free coke.rnel if k--n.

4) Pic(M)--Pic(X) is bi]ective if n>2 and is in]ective if n--2. When
n= 2, the cokernel is torsion free if Hi(M, (n)--HI(X, (x) is injective.

Proof. Set AT=(C)[L], =((AT, P=P(2) and H=(1). ThenP is
a P-bundle over M and there are disjoint sectionsM and M0 corresponding
to quotient bundles ( and _L7 of q, respectively. The open set P--M is
naturally isomorphic to L and M0 is identified with the 0-section. So we
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may assume that X is a divisor in P with XM=. This implies X e
dH for d=deg (f). Since L is ample, M can be contracted to a normal
point v on another variety V. Then X is mapped isomorphically onto an
ample divisor on V. So, by the Theorem, (X)--(V--v)(P--M)
(L)u(M) is bijective for k<(n and is surjective for k=n. Thus we
prove 1). The other assertions follow from this by standard arguments.

Remark. Let f" X->M be a finite cyclic covering of compact complex
manifolds with branch locus B. Then the above results apply to f if B is,

ample. Indeed, it is well known that X can be embedded in the total space
of a line bundle L on M such that B is a member of IdL I, where d=deg (f).

Conjecture. Let V, A be as in the theorem and assume that V--A--Z
is smooth for so.me finite set ZV-A. Then (V--Z, A)={1} for kn.

Idea of Proof. Fix a coordinate o P-SC as above and let a
denote the distance again. For each R0 and each point v o Z, let N,.
={xe V-A]a(x, v)<=R} and set U,=V-L)N,,. Take a sufficiently small
r0 such that U is a deformation retract o U or any a4r. For each
v, take a point p off V with a(p, v)r and set g(x)=Za(x, p)- or x e
V--A and g(x)=0 for x e A. Perhaps g has no degenerate critical point on

U--A for suitably chosen p’s (this part requires a proof). Set T=
{x e V g(x) 1/4r}. Then U TcU since r is sufficiently small. Since
ag/a,O=O at any critical point of g, the Hessian matrix with respect to

real parameter is o the orm ( _), where X and Y aresome sym-

metric matrices. In particular its signature is (n, n). So we have (T, A)--
{1} by Morse theory similarly as in the classical case. This implies
(U, A)={1}.
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