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Let g be a Kac-Moody algebra over a field k with a symmetrizable
generalized Cartan matrix, and ) the Cartan subalgebra of . Here, we
concentrate on the case k--R or C, the real or complex number field. We
denote gc and )c simply by and ) respectively, then g=C(a g, and =C
(R)a ). Let be the unitary form of g (cf. [2]). Let A be a dominant integral
element in )*, and L(A) the irreducible highest weight module for g with
highest weight A. We denote by H(ad) and H(A) the completions of g and
L(A) with respect to the standard inner products (’1 ") and (’1 ")a, respec-
tively. In [2], we defined a group Ka associated with as a subgroup of
the unitary group on the Hilbert space H(A) generated by the naturally
defined exponentials of elements in , and then proved that any element in
L(A) is differentiable and analytic for actions of the exponentials. In this
paper, we extend these results so that we can treat the case of adjoint repre-
sentation as well. Further we show some properties of the exponentials
needed to study fine structures of Ka.

1. Basic facts for Kac.Moody algebras. The notations used here
are the same as in [2]. The standard contravariant Hermitian form (. I’)0
on g is, unfortunately, not positive definite on I) in general, though it is
always positive definite on each root space ". So, we introduce a new inner
product (. I’) on g as follows: first on

(hlh’)o=llhllllh’ll, (h)=<llll[[hll for h, h’e , e )*,
where hll=(h]h)l/, and ] n )* is the dual of I" ] on . Then extend it
to the whole space g by

(xl x’)= (x_ x’-)o+(Xol x)+ (x/
x’ x’_ =,/g, and x0,for x x_+Xo+X/, +Xo+X/ e g with x, x+/- en

X0.
Denote by

_
the infinite direct product 0= t) and of all the root spaces

(a e ), and L_(A) that of all the weight spaces L(A), o L(A). Each element
in g acts both on ] and n L_(A) naturally. The completions H(ad) and H(A)
o g and L(A) are defined as Hilbert spaces contained in and L_(A) respec-
tively as"

H(ad)={(x). e [Ix.ll<+oo}, H(A)={(v)eL_(A);

2. Estimates of norms of g.action. An element ho in is called
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strictly dominant if a(h0)0 or any pesitive root a. Fix such an element
h0. Modifying slightly the method in [1, Proposition 3.1], we obtain the
following estimates of g-action on the g-modules (, ad) and L(A).

Proposition 2.1. i) There exists a positive number C such that
I[x, y][]C(]x [[ho, y] [+][ho, x] y ) (x, yeg).

ii) There exists a positive number C, such that
xv[C,(x ]v]+]xhov+[[ho, x][ v ) (xe, veL(A)).

By this proposition, we get the key estimates as llows.
Proposition 2.2. For any x, x, ..., x and v e L(A), there hold

the inequalities respectively for (, ad) and L(A)"
i) [x, [x, ., [x_, x]. ]] g(m-- 1) C-. 1 (adh0)x ,

p,"" ,pmO p
p +pro=m-1

ii) xx. xv]g(m+ 1) C1

,...,,q0 p
P+**’+Pm+qm. Differentiable vectors and analytic vectors. We define the spaces

H(ad) (resp. H(A)) o vectors o class C (m=0, 1, 2,..., ) in H(ad)
(resp. H(A)) inductively as ollows

H0(ad) H(ad), Ho(A) H(A) H(ad) H(ad), H(A) H(A)
m0 m0

H(ad)={y e H_(ad) [x, y] e H_(ad) for any x e g},
H(A)= {v e H_(A) xv e H_(A) for any x e g},

and define the spaces H(ad) and H(A) of "analytic" vectors by
H(ad)=(y e H(ad) Vx e , 0 such that (1/m) [](ad x)y +},

m0

H(A)={v e H(A) Vxe g, 0 such that (1/m)[]xv]4+}.
m0

Making use of Proposition 2.2, we can prove the following remarkable
fact.

Theorem .2. Let hoe be any strictly dominant element. Then,
the spaces H(ad) and H(A) (me ’--(0, 1, 2, ..., , w}) are characterized
by one element ho as follows"

(i 1) H(ad)= {y e (ad ho)y e H(ad)} or 0gin +,
(i 2) H(ad) {y e H(ad) 0

such that (1/m) (ad ho)y +}
m0

(ill) H(A)=(ve(A); hveH(A) or 0gm+},
(ii2) H(A)={veH(A);0 such that (1/m)]]hv+}.

m0

4. Topologies on the spaces. H(ad) and H,(A) (m ). Theorem
3.2 enables us to define inner products on the spaces H(ad) and H(A)
(0gm +) respectively by

(x y),,==0 ((ad h0)x (ad ho)y) 2r x, y e H,(ad),
(u] v),==o(hu hv) or u, v e H,(A),

with which H,(ad) and H(A) are both Hilbert spaces. On the spaces
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H=(ad) __>0 H,(ad) and H=(A) >=o H,(A), we introduce projective limit
topologies o the topologies these Hilbert spaces.

By Proposition 2.2, the bracket product (x, y)[x, y] e and the
map g L(A) (x, v)xv e L(A) can be extended to cntinuous bilinear maps
rom H(ad) H,(ad) into H_(ad) and H(ad) H,(A) into H_(A) respec-
tively, or any m>0. In particular, we have a toplogical Lie algebra
H(ad), denoted also by =, and its cntinuous representation n H=(A).

Now, we consider topologies on the spaces H(ad) and H(A). For
0<e +, define subspaces o H(ad) and of H(A) respectively by
H(ad D=(y:H(ad) 0<vs<, y ,.= (1/m )8 (ad h0)y] + },

m0

H(A;D=(v e H(A) 0<v3<s, Ilvll,,=E (1/m) Ilhvll< +}.
m0

The space H(ad; D with a amily o norms ]. ,, (0) is a Frchet
space. Similarly, so is (H(A;e), I]’l.. (0D}. We see that H(ad)
=0<+H(ad D and H(A)=o<+H(A;D, and so we adopt inductive
limit topologies on the spaces H(ad) and H(A). Thanks to Proposition
2.1, we see that or any 0eg+, H(ad;D is a Frchet Lie algebra,
denoted also by g,, and that g. leaves H(A DcH(A) invariant and acts
continuously on it. Consequently, H(ad) is a topological Lie algebra,
denoted also by g, and acts continuously on H(A).

5. Completions of the unitary form and their exponentials. Since
the .-operation on g preserves the norm . and leaves invariant the element
h0, it extends to each of the spaces H(ad) (me) and H(ad;D (0
g +) by continuity. So, we can define the completions of the unitary
orm cg in respective spaces by
H(ad) {y e H(ad) y+y* =0}, H(ad D={y e H(ad D y+y* =0}.

In particular, we get real Lie subalgebras f=H(ad)(resp, f=H(ad) and

f. =H(ad D) of g (resp. g and g,) which are topologically closed.
Utilizing the criterion in [4, Chap. IX] for exponentiability of clesed

operators on locally convex topological vector spaces, we get
Theorem 5.1. Let x=,ev(o) x, H(ad).
(i) There exists a unique 1-parameter group expt(adx)=et() of

bounded operators on the Hilbert space H(ad) such that
(d/dt)((exp t(ad x))y}=(exp t(ad x))[x, y] for any y e H(ad).

Moreover, the operator norm [[. [o; of exp t(ad x) is evaluated as
][expt(adx)][oexp(2lt(,e]]a]]]]x,]])/) for all te R.

(ii) There exists a unique 1-paramete group exp tx=e of unitary
operators on the Hilbert space H(A) such that

(d/dt){(exp tx)v}=(exp tx)xv for any v e H(A).
Let m e and x e H(ad). In the case 0(m +, each element in

H.(ad) or in H(A) is exactly m-times differentiable or the 1-parameter
group expt(adx) or exptx in usual sense. As for the case re=w, each
element in H(ad) or in H(A) is really analytic as well.

6. Properties o the exponential map on f. Each element in g is
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analytic nd acts on and L_(A), and so we get
Lemma 6.1. Let 0 + c x e ,
i) If C x 11,,6, then there holds the equality

[y, e()z]=e([e-()y, z] for any z e H(d), y e g.
ii) If max(C, C,)llxll,,(l/-)-, then

yexv=eX(e-(dX)y)v for any v e Hi(A), y e g.
Taking h0 as y in this lemma and using Proposition 2.2, we obtain
Theorem 6.2. Let x e and m e . The operator e() (resp. e)

leaves invariant each H(ad) (esp. H()), and the restriction of e ) (resp.
e) to H(ad) (resp. H(A))is continuous.

By this theorem, Lemma 6.1 is improved as ollows.
Proposition 6.3. Let x e ,,.
i) [y, e()z]=e)[e-Xy, z] for any y e Hl(ad), z e H(ad).

ii) yeXv=eX(e-(d)y)v for any y e H(ad), v e H(//).
From this proposition, we obtain
Proposition 6.4. For any x e and y e H(ad), it holds that
i) e(ad X)e(ad U)e-(ad x) cad (e (adx)y)

ii) e e e- e ()).

Let K (resp. K) be the group o operators on H(ad) (resp. H(//))
generated by exp (ad ) (resp. exp ). Since the map exp 2rom into the
unitary group on H(A) equipped with the strong operator topology, is con-
tinuus, as we can prove by using Theorem 6.2 and the differentiability o
elements in H(/), K is a ntural subgroup o2 the group K defined in [2].
I l is strictly dominant, by the last two propositions, we can define a group
homomorphism Ad o K into K such that

g. x. g-. v-- (Ad (g)x). v or any g e K, x e Hl(ad), v e H(A).
Thus we get the adjoint representation o2 K on . Further Proposition
6.3 i) implies that each element in K defines an automorphism on the Lie
algebra (resp. g) which leaves invariant the real subalgebra (resp. ).
As a cnclusion, we have obtained groups K and K whose group struc-
tures are closely connected with the Lie algebra structure o .
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