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1. Introduction. Stephan J. Willson pointed out that cellular auto-
mata can generate fractals [1]. Specifically he showed that in any 2-state
linear cellular automaton a sequence of space time pattern at time 2 con-
tracted by a factor 1/2 converges to a limit when n tends to infinity. This
result, however, can be generalized, and we will show in this paper that
every linear cellular automaton has its "limit set". (Limit set is defined in
section 2.)

2. Preliminaries. Throughout this paper, we assume that p is a
prime and t, d, M, m, k e N where N is the set of natural numbers.

A d-dimensional M-state cellular automaton can be defined as follows.
Consider d-dimensional lattice points on which copies of an automaton
called "cells" are located. Let i e Z denote the site of a cell, and t discrete
time step. Each cell takes a state value which belongs to {0, ..., M--l}.
We denote by a the state of an/-cell at time t. The states of cells at time
t are determined by the states of cells at time t-1 by,

a t-1 t-1 t-m)--f(a_l, a_, ..., a
wheref ] ..,]eZaandf (0,. ,M I) (0, ,M I). fisa"Iocal
transient function" and (f, ..., ]} is called a "neighbourhood index".

We treat only the case where f is "linear" i.e.,
f(x, x, ., x)=.x+ +.xmod M (x,...,eN).

The space time pattern of a cellular automaton sometimes reveals
interesting properties. To study it in its limit, we define "limit set" of a
cellular automaton as follows.

Definition 2.1. Let T" NN and T(1)T(2)T(3). We define
S(n), lim SR+ for this T(n) as follows.

S(n)=
T(n) T(n) T(n) "" Tn) aO, $T(n) and i=(i, ., i)

We define limsup S(n) and liminf S(n) as in S. J. Willson ([1], p. 93).
If limsup S(n)= liminf S(n), then we define lim S the "limit set" of cel-

lular automaton by,
lim S limsup S(n)=liminf S(n).

3. Existence of limit set. Unless otherwise stated, we assume that

a= 1 for i=(O, ..., 0) and a=O otherwise.
Some properties of linear cellular automata are derivable from those

of multinomial coefficients.
Multinomial coefficients have, for example, the following properties
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(see [2] Theorem 3.10, [3] p. 380).
Lemma 3.1. Suppose t-- cl + c+ + c,, pk 1 t, and u e N (1um)

P Xc. Then we have,

0 mod p.
c! c.!.

Lemma .2. Suppose t=c+c+... +c and p-lt then,
(p.t) md p.

(p c) (p c)
From these properties of multinomial coefficients, we can show the

following theorem.
Theorem 3.3. Linear p-state cellular automata have the following

properties.
(1) If p+lt and ueN (lud), p+i where i=(i,...,i), then

a=0.
(2) If p- t then
Proof. By the linearity, we note first that

rood M (2.1)a... c
(c, ..., c e N).

The sum is over all (c, ..., c) such that
t=c+...+c, and c.]+...+c.]=i.

Ip+t and u e N (lgugd), p+i, then we deduce that c (lgvgm)
p’+c, for (c, ..., c) of (2.1), and therefore a=O from Lemma 3.1. So
(1) is proved.

We write down also a as in (2.1).
(p.a ...(p.c) (p.c)

aft""

+ (p. t) mdM,...,
where the first term is summed under the restriction

t=c+ +c, and c.]+ +c.]=i,
while the second term is summed over all (s, ..., s) which satisfies
(p.t)=s+...+s, s.]+ ...+s.j=(p.i) and s (lgugm)ps.
From Lemma 3.1, the second term equals 0.
So, Euler’s theorem (Vr e NrVr- mod p) and Lemma 3.2 give the

relation (2) directly. This completes the proof.
For p-state linear cellular automata, we define a subset X(n)of S(n)

as follows.

(( t i i i )X(n)= T(n)’ n)’ T(n)’ "" Tn) ia,O, tT(n), p-2it, i=(i, ...,i)

Then lim X limsup X(n)=liminf X(n) when limsup X(n)=liminf X(n).
If we assume that T(n)=p’, then we have X(1)X(2)... from

Theorem 3.3. So there exists limX.
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The following theorem can be verified using a similar method to that
of Willson ([1], p. 94).

Theorem 3.4. For any M-state linear cellular automaton where M
(p denotes a prime, k e N), a limit set lim S exists for T(n)=p. Further-
more this lim S is equal to lim X.

This theorem can be generalized to the following.
Theorem 3.5. Given any linear cellular automaton, there exists a

T(n) for which a limit set of this cellular automaton exists.
4. Application. We can relax the restriction for an initial state

configuration stated in the beginning of section 3.
Theorem 4.1. Consider an M-state cellular automaton with an initial

state configuration where only a finite number of cells have nonzero state
values. Then the limit set of this cellular automaton is equal to the limit
set of an M’-state cellular automaton which has the same transition function
as before except that M’=L.C.M. (M/(M, a,)), where (M, a) means G C. D

of M and a.
Concerning Husdorff dimension, we have,
Theorem 4.2. Consider a cellular automaton with M--p. Assume

Pol, "’’, P/0r, Pl0r+l, "’’, PlO, and (1, ]l), --’, (1, it)e Z+1 are linearly
independent, then the Hausdorff dimension of a limit set of this cellular
automaton is log (p.(p+ 1) (p+r--1)/r !).

We Mso investigated the limiting behaviour of a particular state. We
define S (n; b), limS (b) or l<_b<_M--1, as in Definition 2.1.

S(n; b)- T(n)’ Tn)’ T(n)’ "" T-(n) a=
lim S(b)=limsup S(n b)=liminf S(n b)

when
limsup S(n b)=liminf S(n b).

Then we have,
Theorem 4.3. For a given M-state cellular automaton, assume that

M--p, pl b, pr/ )(b, and u, v e N(lu, v_m, u=/=v) pX pXv. Then limS(b)
is equal to the limit set of another M’-state cellular automaton which has
the same transition function except that M’=p-.
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