22. Local Analytic Dimensions of a Subanalytic Set

By Heisuke HIRONAKA, M. J. A.

(Communicated, Feb. 12, 1986)

The class of subanalytic sets in a real-analytic manifold M is, by definition, generated by the images of proper real-analytic maps into M with respect to the elementary set-theoretical operations, i. e., finite union, finite intersection and difference. A subanalytic set X in M admits a locally finite stratification in which strata are locally closed real-analytic submanifolds (smooth and connected) of M, say X_i , and are subanalytic themselves in M. (cf. [3]) This enables us to define the topological dimension of X at each point x of M as follows:

t-dim_x X = max {dim X_i : $x \in \overline{X}_i$ }

which is independent of the choice of stratification.

This article is concerned with other kinds of local dimension of X. First of all, it is known that the closure \overline{X} is also subanalytic in M and is in fact the image of a proper real-analytic map, say $f: Y \rightarrow M$. Here we assume that Y is a reduced real-analytic space because the reduction (killing the nilpotents in the structure sheaf of functions) does not affect the image set. Then, for each point $x \in \overline{X}$, we let

$$A_x(X) = \{h \in \mathcal{O}_{M,x} : (h \circ f)_y = 0 \text{ for all } y \in f^{-1}(x)\}$$

$$F_x(X) = \{\hat{h} \in \hat{\mathcal{O}}_{M,x} : (\hat{h} \circ \hat{f})_y = 0 \text{ for all } y \in f^{-1}(x)\}$$

where $\mathcal{O}_{M,x}$ denotes the ring of germs of analytic functions at x on M, $()_y$ does the germ at y, $\hat{\mathcal{O}}_{M,x}$ does the formal completion of $\mathcal{O}_{M,x}$ and $(\circ \hat{f})_y$ does the completion map of $(\circ f)_y : \mathcal{O}_{M,x} \to \mathcal{O}_{Y,y}$.

Definition. The Krull dimension of $\mathcal{O}_{M,x}/A_x(X)$ is called the analytic dimension of X at x, denoted by a-dim_x X, while that of $\hat{\mathcal{O}}_{M,x}/F_x(X)$ is called the formal dimension of X at x, denoted by f-dim_x X.

The dimensions, analytic and formal, defined as above are in fact independent of the choice of f and depend only on the image \overline{X} . So are the ideals $A_x(X)$ and $F_x(X)$. Obviously $t\operatorname{-dim}_x X \leq f\operatorname{-dim}_x X \leq a\operatorname{-dim}_x X$ and the strict inequalities are possible. (cf. [2] and [3])

The result of this article is

Theorem. Let X be any subanalytic subset of M. Then there exists a locally finite stratification, say $X = \bigcup_i X_i$, with strata X_i all subanalytic in M, having the following properties: For a sufficiently small open neighborhood U_i of X_i in M for each i, we have

1) X_i is a closed real-analytic submanifold of U_i

2) there exists a coherent ideal sheaf A_i in \mathcal{O}_{U_i} having stalks $A_{ix} = A_x(X)$ for all $x \in X_i$

3) \hat{U}_i denoting the formal completion of U_i with respect to the powers

of the ideal sheaf of X_i , there exists a coherent ideal sheaf F_i in $\mathcal{O}_{\mathcal{O}_i}$ such that $F_x(X) = F_{ix} \hat{\mathcal{O}}_{\mathcal{O}_i,x}$ for all $x \in X_i$.

Corollary. For every integer $d \ge 0$, the set of points x of M with $a\operatorname{-dim}_x(x) = d$ is a subanalytic set in M. Similarly, the set of x with $f\operatorname{-dim}_x(X) = d$ is a subanalytic set in M. (cf. conjectures in [1])

Here we describe a rough sketch of the proof of the theorem, whose details will be published elsewhere.

Step 1. There exists a locally finite stratification of the closure of X, say $\overline{X} = \bigcup X_i$, having the following properties :

a) X_i is a locally closed real-analytic submanifold in M, connected and subanalytic in M.

b) \overline{X} is the image of a proper real-analytic map $f: Y \to M$ such that Y is a reduced real-analytic space (may even be assumed to be smooth by resolution of singularities) and such that $\bigoplus_{m=0}^{\infty} H_i^m / H_i^{m+1}$ is flat as \mathcal{O}_{X_i} -module, where H_i is the ideal sheaf in \mathcal{O}_Y within a small neighborhood of $f^{-1}(X_i)$ which is generated by the ideal of X_i in M with reference to f.

Step 2. Let U_i be a sufficiently small neighborhood of X_i in M, in which X_i is closed. Let \hat{U}_i be the completion of U_i by the powers of the ideal sheaf of X_i , and let \hat{Y}_i be the completions of $Y | f^{-1}(U_i)$ by the powers of the H_i in Step 1. For each point x of X_i , let J_x be the intersection of the kernels of the homomorphisms $\hat{\mathcal{O}}_{\hat{U}_i,x} \rightarrow \hat{\mathcal{O}}_{\hat{Y}_i,y}$ for all $y \in f^{-1}(x)$. Then there exists a coherent ideal sheaf J in $\hat{\mathcal{O}}_{\hat{U}_i}$ whose stalks are those J_x .

Step 3. The last step is a lemma in complex-analytic geometry.

Lemma. Let Z be a closed complex-analytic subspace of a complexanalytic manifold V. Let \hat{V} be the completion of V by the powers of the ideal sheaf of Z in \mathcal{O}_{v} . Let \hat{G} be any coherent ideal sheaf in $\mathcal{O}_{\hat{v}}$. Then there exists a coherent ideal sheaf G' in \mathcal{O}_{v} within a small neighborhood of each stratum Z_{j} of a locally finite complex-analytic stratification of Z such that for every point z of Z_{j} the stalk G'_{z} is the kernel of the natural homomorphism $\mathcal{O}_{V,z} \rightarrow \mathcal{O}_{\hat{V},z}/\hat{G}_{z}$.

Using the resolution of singularities, the proof of the lemma is reduced to the following fact: Let $x = (x_1, x_2, \dots, x_n)$ and y be complex variables. Let F(x, y) be a formal power series in the variable y in which the coefficients are holomorphic functions in a fixed neighborhood of 0 in the space of x. If F(x, y) is divergent at (0, 0) then so is it at every (x, 0) with x sufficiently close to 0.

Remark. In the above lemma, if V is a complexification of a realanalytic manifold and if the ideal sheaf of Z and \hat{G} are generated by realanalytic and real-formal functions, then G' is also generated by real-analytic functions. In the application to our situation, we let Z, V be complexifications of X_i , U_i . The flatness in Step 1 plays a very important role in proving the statement of Step 2. Moreover it is needed in proving that J_x of Step 2 generates $F_x(X)$ in the completion of $\mathcal{O}_{U_i,x}$. No. 2]

References

- [1] Bierstone, Edward, and Milman, Pierre, D.: Relations among analytic functions. University of Toronto, 1985 (preprint).
- [2] Gabrielov, A. M.: Formal relations between analytic functions. Math. U.S.S.R. Izvestija, 7, 1056-1088 (1973).
- [3] Hironaka, Heisuke: Subanalytic sets. Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki. Kinokuniya, Tokyo, pp. 453-493 (1973).