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Introduction. In his previous paper [3], the author constructed infi-
nitely many pure number fields of any given odd degree n(>>1) whose ideal
class groups have 2-rank at least 24,, where 4, is the number of divisors
of n which are smaller than n, that is 4,=T[];.;(e;+1)—1 if n=[]i_, p¥ is
the decomposition of n into prime factors. The aim of the present paper
is to give a stronger result. We shall namely show the following

Theorem. For any odd natural number n greater than 1, there exist
nfinitely many pure number fields of degree n whose ideal class groups
have 2-rank at least 34,.

In order to prove this, we make use of the symmetric polynomial in
XY, Z;

DX, Y, Z)= X+Y'+720 XY+YZ+ZX

4 2
- (;Kﬂjri)z _YZ= (&Xiﬁ)z_ 72X
2 2
N R

Putting (X, Y, Z2)= (2", y*, ) and A,, C; as in the table below, we obtain
the polynomial D(x", y~, 2")=C}—A7=C}— A3=Ci— A%

(2 A,; | 2C’L

1 Yz — "y 2"
2 zx xr—y 42"
3 xy x4yt —z"

This polynomial, which will play an important part in our proof, is
also applied to the research on “n-rank” of the ideal class groups of quad-
ratic fields (Yamamoto [4], Craig [1], [2]). In that case, all the three above
expressions of D(x", y", 2") cannot be used effectively (see [1] pp. 451).
However, in the proof of our theorem, we take full advantage of them.

In case n=3 i.e. pure cubic case, corresponding to Craig’s precise
result [2] on 3-rank of the ideal class groups of quadratic fields, we can
prove a 2-rank theorem giving a better estimation than above, which will
appear elsewhere.

*  Partially supported by the F{ijukai Foundation.
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1. Let n be a fixed odd natural number greater than 1, S be the set
of all divisors of n smaller than n. 4, is the cardinal of S.

For rational integers z, vy, z, let A,, C, be as above,

D=D(", y", 2", 6=%D, K=Q(©)
and
L=KW60'+A¢|deS, 1<i<3).

Then we have

Lemma 1. Let x, y, z be rational integers satisfying the following
conditions :

(1) @ —y", )=W"—2" x)=("—a", y)=1.
(2) (=2 +y"+2" n)=@"—y"+2", n)=@"+y"—2z", n)=1.
(3) Two of x, Y, z are multiples of 4 and the other is odd.

Then L/K is an extenston unramified at all primes of K.

Proof. Consider de S and ¢ (1<i<8) as fixed. It suffices to show
that the quadratic extension K(v8°+A¢)/K is unramified at all primes of
K. First, since 6"+ A?=C?>0 and consequently 8?4+ A¢ is totally pcsitive,
any infinite prime of K is unramified. Next, it follows from (1) and (2)
that nd, and C, are relatively prime in the ring Z[2-']. Therefore, in the
same manner as in the proof of Proposition in [3], we have ord, (6°+ A9 =0
(mod 2) for any prime ideal p of K prime to 2. This implies that all such
prime ideals are unramified for K(v/6?+A%. Lasily, we consider the prime
ideal of K lying above 2. From (3), it is easy to see that A;=0 and 4D=1
(mod 4), thus ord, (D)= —2. As n is odd, there is the unique prime ideal
[ of K lying above 2. Put p=26"-Y~, Since ord, (§)= —2, we have ord, (p)
=1 and p**(0*+ A =(40")"+p*A{=(4D)*=1 (mod 4). Hence [ is unrami-
fied for K(v 0%+ A%))=K(v 0"+ AY).

2. Next, we are concerned with sufficient conditions for x, ¥, z to the
effect that L/K will be an abelian extension with Galois group isomorphic
to (Z/2Z)n,

We fix = such that z"=2, and put F=@Q(z). As shown in [3], there
exist prime ideals ¢’ (de S, 1<i1<3) of F of degree 1 satisfying

2

(4) (535)=+1, (%o )= @ees,1sisy),

where (—) denotes the quadratic residue symbol and §,, the Kronecker

delta. Furthermore, putting p’ =9 N Z, we may take p$ so that there is
a rational integer c¢ satisfying
(5) ¢ +2¢"—1=0 (modpy) (de S, 1<i<3),
and that p (d € S, 1<¢<3) are pairwise distinct and prime to 2n. We fix
such ¢ and c.
Lemma 2. Let x, y, z be rational integers satisfying, for all d e S,
r=0, y=—¢, z=c' (modp?),

(6) {xzc", y=0, z=—c¢ (modp?d),

r=—c, y=c', z=0 (mcdp$).



No. 2] Construction of Pure Number Fields 63

Then the 34, elements °+ A7 (d e S, 1<t<3) are independent in K*|K*?,
if [K: Ql=mn.

Proof. Assume that [K: Ql=n, so that f(X)=X"—D is irreducible.
Take a rational integer u congruent to z modulo p$’ forall de S and 7 11
<3). By the congruences (5) and (6), we have D=2 (mod p$’), consequently
f@)=0 (mod p#). As f/(u)=nu""'=£0 (mod p$), PP =(@—u, p$’) is a prime
ideal of K of degree 1 and thus there are the canonical isomorphisms

OB =Z|pPZ=Or[p  (de S, 1Z0L3),
where O, (resp. Oy) is the ring of integers of K (resp. F)). Therefore, by
(4) and (6), we have for d, ee S and 7, 7 1<, 7<3)

( 06;5& ) (up;)l )z( ﬁp(_“1 ) (— 1y,
(3)-(o)-G
that is, ks
(")~

Now, suppose

)=+1 (1),

ifd=e and i=j,
otherwise.

[1 [T @ +A) e K=,

ecsS j=1
for some ¢{”=0 or 1. Considering this relation modulo 8¢, we hzave a
=0. This proves our assertion.

3. We now prove the theorem. Since there are infinitely many prime
numbers g such that 2 is an n-th power residue modulo ¢, it is sufficient to
construct, for any given such ¢, at least one pure number field K of degree
n so that K has an unramified abelian extension with Galois group iso-
morphic to (Z/2Z)*», and q is ramified for K. Let ¢ be such a prime
number. We may safely assume that ¢ is prime to 2xn [],.p. Take
rational integers «, y, 2 satisfying (6) and

x=1, y=1, z"=4+q (mod g,
(") =0, y=0, z=1 (mod 4),
=1, y=1, z=1 (mod n),
in the following procedure. First, choose x and ¥ in the form
(8) =4[] pf, y=dy [[ PP where ¢ 7=, 2ng [ pi)=1.

Next, choose z satisfying the additional congruences

9) z=—9y (mod &), 2z=-—2a (modyp),
in the form
10). z2=C [] p$ where (¢, 2" —y")=1.

daes
Referring to the choice of p{, ¢ and the congruences (6), (7), we see easily
that such x, y, 2 or &, 5, { exist. Then, by a simple calculation using (5)-
(10), we can show that x, y, z satisfy (1)-(3) and also ¢||D. Hence, from
Lemmas 1 and 2, our assertion is proved.
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