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Introduction. In his previous paper [3], the author constructed infi-
nitely many pure number fields of any given odd degree n(1) whose ideal
class groups have 2-rank at least 2d, where dn is the number of divisors
of n which are smaller than n, that is Z/n= l-I :1 (e,+l)--I if n= 1-[=1P’ is
the decomposition of n into prime factors. The aim of the present paper
is to give a stronger result. We shall namely show the following

Theorem. For any odd natural number n greater than 1, there exist
infinitely many pure number fields of degree n whose ideal class groups
have 2-rank at least 31.

In order to prove this, we make use of the symmetric polynomial in
X, Y, Z;

D(X, Y, Z)-- X./ y.+Z XY+YZ+ZX
4 2

--YZ --ZX
2 2

Putting (X, Y, Z)=(xn, yn, Zn) and A, C as in the table below, we obtain
the polynomial D(xn, yn, zn)__ C-A C-A=C]-A.

i A 2C
1 -Z- --xn"-yn’-zn
2 zx X yn

__
Z

X yn zn3 xy +
This polynomial, which will play an important part in our proof, is

also applied to the research on "n-rank" of the ideal class groups of quad-
ratic fields (Yamamoto [4], Craig [1], [2]). In that case, all the three above
expressions of D(x, y, z) cannot be used effectively (see [1] pp. 451).
However, in the proof of our theorem, we take ull advantage of them.

In case n=3 i.e. pure cubic case, corresponding to Craig’s precise
result [2] on 3-rank o the ideal class groups o quadratic fields, we can
prove a 2-rank theorem giving a better estimation than above, which will
appear elsewhere.
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1o Let n be a fixed odd natural number greater than 1, S be the set
of all divisors of n smaller than n. /n is the cardinal of S.

For rational integers x, y, z, let A, C be as above,
D=D(x, y’, z), t-- /-D K= Q(t)

and
L=K(/+A ld e S, 1_i3).

Then we have
Lemma 1o Let x, y, z be rational integers satisfying the following

conditions"
( 1 (x y, z) (y zn, x) (z n, y) 1.
(2) (--xn+y/zn, n)=(x--y+z, n)=(x/y--z, n)=l.
( 3 ) Two. of x, y, z are multiples of 4 and the other is odd.
Then L/K is an extension nramified at all primes of K.

Proof. Consider d e S and i (1i<3) as fixed. It suffices to show
that the quadratic extension K(/t/AT)/K is unramified at all primes of
K. First, since O/A=C0 and consequently t+A is totally pcsitive,
any infinite prime of K is unramified. Next, it follows from (1)and (2)
that nA and C are relatively prime in the ring Z[2-1]. Therefore, in the
same manner as in the proof of Proposition in [3], we have ord, (O+AT)=0
(mod 2) for any prime ideal p of K prime to 2. This implies that all such
prime ideals are unramified for K(/-4-A7). Las[ly, we consider the prime
ideal of K lying above 2. From (3), it is easy to see that A--0 and 4D--1
(mod 4), thus ord (D)=--2. As n is odd, there is the unique prime ideal
of K lying above 2. Put p-2t-)/. Since ord (t)----2, we have ord (p)
=1 and p(O+A)=(4tn)+pA_(4D)--I (rood 4). Hence ; is unrami-
fled or K(/p(+A))--K(//A).

2. Next, we are concerned with sufficient cnditions er x, y, z to the
effect that L/K will be an abelian extension with Galois group isomorphic
to (Z/2Z).

We fix such theft =-2, and put F-Q(). As shown in [3], there
exist prime ideals p;) (de S, 1 <i<3) of F of degree 1 satisfying

(p()) ( e-1 ) 1)(4) 2 =/1, \---() =(-- (d,eS,li3)

where ()denotes the quadratic residue symbol and (ge the Kronecker

delta. Furthermore, putting p()=p) Z, we may take p( so that there is
a rational integer c satisfying
(5) c+2c-1--0 (rood p()) (de S, 1_i3),
and that p) (d e S, 1<_i3)are pairwise distinct and prime to 2n. We fix
such p()and c.

Lemma 2. Let x, y, z be rational integers satisfying, for all d e S,

{!-0’ y--c, z-c- (mdpl)’
(6) =c-, y--0, z----c (rood

--c, y-- c-, z--O (mcdp()).
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Then the 3n elements O+A (deS, 1=<i=<3)are independent in K/K,
if [K" Q]=n.

Proof. Assume that [K" Q] =n, so that f(X)=X-D is irreducible.
Take a rational integer u congruent to modulo p) or all d e S and i (1i
3). By the congruences (5) and (6), we have D--2 (mod p)), consequently
f(u)--O (mod p). As f’(u)=nu-O (mod p)), )=(--u, p)) is a prime
ideal of K o degree 1 and thus there are the canonical isomorphisms

/)Z/p)Z/O) (d e S, 1i3),
where (resp. ) is the ring of integers of K (resp. F). Therefore, by
(4) and (6), we have or d, e e S and i, ] (1i, ]3)

(_

0e+A
-P) --)- + 1 (i.i),

that is,

Now, suppose

[_oe_A.=[--1, if d--e and i-j,
\ [+)! 1, otherwise.

for some aJ)--0 or 1. Considering this relation modulo ), we h.ve a
--=-0. This proves our assertion.

:. We now prove the theorem. Since there are infinitely man.v prime
numbers q such that 2 is an n-th pwer residue modulo q, it is sufficient to
construct, or any given such q, at least one pure number field K of degree
n so that K has an unramified abelian extension with Galois group iso-
morphic to (Z/2Z)3n, and q is ramified or K. Let q be such a prime

p() Takenumber. We may saely assume that q is prime tv 2n
rational integers x, y, z satisfying (6) and

{i--l, Y--l, z--4/q (modq),
(7) =0, y--0, z--1 (mod4),

--1, y--l, z--1 (modn),
in the ollowing procedure. First, choose x and y in the orm
(8) x--45 [-[ p(x), y=4 I[ P(:) where ($, V)=(@, 2nq [ p))=l.

dS dS d,i

Next, choose z satisfying the additional congruences

(9) z----y (mod ), z---x (mod ]),
in the orm
(10) z= ]-[ p() where (, x--y)=l.

Referring to the choice of p(), q and the congruences (6), (7), we see easily
that such x, y, z or $, ;, exist. Then, by a simple calculation using (5)-
(10), we can show that x, y, z satisfy (1)-(3) and also q D. Hence, from
Lemmas 1 and 2, our assertion is proved.
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