112. Groups Associated with Compact Type Subalgebras of Kac-Moody Algebras

By Kiyokazu SUTO
Department of Mathematics, Kyoto University

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1986)

The Kac-Moody groups associated with a given Kac-Moody algebra as constructed by Peterson-Kac [5] have a disadvantage that the exponential map can not be defined on the whole algebra. The present note gives a partial solution to the problem to remedy the situation, by constructing groups in the above title.

§ 1. Kac-Moody algebras. Let \mathfrak{g} be a Kac-Moody algebra and A the corresponding generalized Cartan matrix (GCM). Let \mathfrak{h} be the Cartan subalgebra of \mathfrak{g} , Δ the root system of $(\mathfrak{g}, \mathfrak{h})$, Π the set of simple roots, Δ_+ the set of positive roots with respect to Π , and W the Weyl group. We denote by \mathfrak{g}_R the Kac-Moody algebra over the real number field R corresponding to the GCM A, and by \mathfrak{h}_R the Cartan subalgebra of \mathfrak{g}_R . Then, $\mathfrak{g}=C\otimes\mathfrak{g}_R$ and $\mathfrak{h}=C\otimes\mathfrak{h}_R$. There exists an involutive antilinear automorphism ω_0 on \mathfrak{g} such that

(1.1)
$$\omega_0(h) = -h \quad (h \in \mathfrak{h}_R), \qquad \omega_0(\mathfrak{g}^\alpha) = \mathfrak{g}^{-\alpha} \quad (\alpha \in \Delta),$$

where g^{α} is the α -root space (cf. [3, Chap. 2]). We denote by f and f_R the set of fixed points of ω_0 in g and g_R respectively. Then, $f_R = f \cap g_R$. Since ω_0 is an involution, f is a real form of g as a Lie algebra. We call f the unitary form of g and f_R a compact type subalgebra of g_R . If g is finite-dimensional, then g is semisimple, f is a compact real form of g, and f is a maximal compact subalgebra of g_R .

We assume throughout that the GCM A is symmetrizable (cf. [3]). Then, there exists a symmetric bilinear form $(\cdot | \cdot)$ on \mathfrak{g} , a standard invariant form, which is infinitesimally invariant under ad \mathfrak{g} . The restriction of $(\cdot | \cdot)$ to \mathfrak{h} is W-invariant and non-degenerate, and defines a W-equivariant linear bijection \mathfrak{p} from \mathfrak{h} onto its dual \mathfrak{h}^* . We denote by the same symbol $(\cdot | \cdot)$ the induced bilinear form on \mathfrak{h}^* . Then we have

$$(1.2) [x, y] = (x | y) \nu^{-1}(\alpha) (x \in \mathfrak{g}^{\alpha}, y \in \mathfrak{g}^{-\alpha}, \alpha \in \Delta).$$

We define a sesquilinear form $(\cdot | \cdot)_0$ on g as

(1.3)
$$(x | y)_0 = -(x | \omega_0(y)) \qquad (x, y \in \mathfrak{g}).$$

Then, according to [4, Theorem 1], $(\cdot | \cdot)_0$ is Hermitian and its restriction to each root space g^{α} is positive definite.

Put $\mathfrak{n}_{\pm} = \sum_{\alpha \in \mathcal{A}_{+}} \mathfrak{g}^{\pm \alpha}$. Then, they are both subalgebras of \mathfrak{g} , and we have a triangular decomposition $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ (direct sum).

§ 2. Irreducible highest weight modules. Let $\lambda \in \mathfrak{h}^*$ and L_{λ} be the left ideal of the enveloping algebra $U(\mathfrak{g})$ generated by \mathfrak{n}_+ and $\{h - \lambda(h) \mid h \in \mathfrak{h}\}$.

Then, the left g-module $M(\lambda) = U(g)/L_{\lambda}$ is the Verma module for g with highest weight λ . We denote by $L(\lambda)$ the unique irreducible quotient of $M(\lambda)$.

Let P be the projection from $U(\mathfrak{g})$ onto $U(\mathfrak{h})$ along the decomposition $U(\mathfrak{g}) = U(\mathfrak{h}) \oplus (U(\mathfrak{g})\mathfrak{n}_+ + \mathfrak{n}_- U(\mathfrak{g}))$. Denote by $\langle \cdot | \cdot \rangle_{\lambda}$ the sesquilinear form on $U(\mathfrak{g})$ defined by

$$(2.1) \langle x | y \rangle_{\lambda} = P(y^*x)(\lambda) (x, y \in U(\mathfrak{g})),$$

where we identify $U(\mathfrak{h})$ with the polynomial ring $C[\mathfrak{h}^*]$ on \mathfrak{h}^* , and $y \to y^*$ is the unique antilinear antiautomorphism on $U(\mathfrak{g})$ which coincides with $-\omega_0$ on \mathfrak{g} . If $\lambda \in \mathfrak{h}_R^*$, then $\langle \cdot | \cdot \rangle_{\lambda}$ is Hermitian and its restriction to the largest proper ideal of $U(\mathfrak{g})$ containing L_{λ} is identically zero. Hence, $\langle \cdot | \cdot \rangle_{\lambda}$ induces a Hermitian form $(\cdot | \cdot)_{\lambda}$ on $L(\lambda)$. Clearly, $(\cdot | \cdot)_{\lambda}$ has the following property, called the *contravariance* of $(\cdot | \cdot)_{\lambda}$.

$$(2.2) (xu|v)_{\lambda} = (u|x^*v)_{\lambda} (u, v \in L(\lambda), x \in \mathfrak{g}).$$

Since the GCM A is assumed to be symmetrizable, $(\cdot | \cdot)_{\lambda}$ is positive definite if λ is dominant integral ([4, Theorem 1]).

§ 3. Construction of groups associated with the unitary form \mathfrak{f} . In this section, we assume that Λ is a dominant integral element of \mathfrak{h}_R^* . Let μ be a weight of $L(\Lambda)$ and ρ an element of \mathfrak{h}_R^* taking the value 1 on each simple coroot. From the proof of positivity of $(\cdot | \cdot)_{\Lambda}$ in [4, Theorem 1], we get the following evaluation of the norm of \mathfrak{n}_+ -action,

$$(3.1) ||xv||_A^2 \le 2^{-1} (|A+\rho|^2 - |\mu+\rho|^2) ||x||_0^2 ||v||_A^2, (x \in \mathfrak{n}_+)$$

for any element v of the weight space $L(\Lambda)_{\mu}$, where, for $\lambda \in \mathfrak{h}^*$, $|\lambda|^2 = (\lambda |\lambda)$. Making use of this inequality together with the formula (1.2), we obtain an evaluation for the \mathfrak{n}_- -action (this time depending on the root α) as

$$||xv||_{4}^{2} \leq 2^{-1}(|\Lambda+\rho|^{2}-|\mu+\rho|^{2}+2(\lambda|\alpha))||x||_{0}^{2}||v||_{4}^{2}$$

for $x \in \mathfrak{g}^{-\alpha}$, $\alpha \in \mathcal{A}_+$, $v \in L(\Lambda)_u$. From these evaluations, we have

Theorem 3.1. For any $0 < \varepsilon < 1$, there exists an absorbing, symmetric and *-invariant subset B_{ε} of g such that for any $v \in L(\Lambda)$ there exists a positive constant $C = C_{\varepsilon}$ such that for any $x \in B_{\varepsilon}$, we have

(3.2)
$$||x^m v||_{A} \leq Cm! \varepsilon^m \quad (m=0, 1, 2, \cdots).$$

Hence, the series $\sum_{m=0}^{\infty} \|(m!)^{-1}x^mv\|_A$ converges uniformly and is bounded on B_{ε} .

Let $H(\Lambda)$ be the completion of the pre-Hilbert space $(L(\Lambda), (\cdot | \cdot)_{\Lambda})$ and $B = \bigcup_{0 < \varepsilon < 1} B_{\varepsilon}$. For any $x \in B$, because of Theorem 3.1, we can define a linear map $\exp x$ from $L(\Lambda)$ into $H(\Lambda)$ by

(3.3)
$$(\exp x)v = \sum_{m=0}^{\infty} (m!)^{-1}x^mv \qquad (v \in L(\Lambda)).$$

By the contravariance (2.2) of $(\cdot | \cdot)_{\Lambda}$, each element of f acts on $L(\Lambda)$ as an antisymmetric operator. Hence, if $x \in B \cap f$, then $\exp x$ is an isometry. More strongly,

Proposition 3.2. i) For any $x \in B \cap f$, $\exp x$ is uniquely extended to a unitary operator on $H(\Lambda)$, and we have

$$(3.4) (\exp x)^{-1} = \exp(-x).$$

ii) If two elements x and y in $B \cap f$ commute with each other, then $\exp x$ and $\exp y$ also commute. If $x+y \in B \cap f$ in addition, then we have

(3.5) $(\exp x) (\exp y) = \exp (x+y).$

Let $U(\Lambda)$ be the group of unitary operators on $H(\Lambda)$ equipped with the strong operator topology. By Proposition 3.2, the map \exp from $B \cap f$ into $U(\Lambda)$ is naturally extended to the whole f. Let K^{Λ} be the closed subgroup of $U(\Lambda)$ generated by $\exp f$, and $H^{\Lambda} = \exp \sqrt{-1} \mathfrak{h}_{R}$.

Definition 3.3. We call K^{Λ} the compact type group associated with the unitary form f, and H^{Λ} the Cartan subgroup of K^{Λ} .

If g is finite-dimensional, then K^{A} is a compact Lie group with Lie algebra f and H^{A} is a maximal torus of K^{A} . Even when g is infinite-dimensional, H^{A} is compact in many cases as follows.

Theorem 3.4. Let $\mathcal{E}(\Lambda)$ be the subgroup of \mathfrak{h}^* generated by all the weights of $L(\Lambda)$. If $\mathcal{E}(\Lambda)$ is discrete, then H^{Λ} is compact and the Pontrjagin dual of H^{Λ} is isomorphic to $\mathcal{E}(\Lambda)$.

For instance, if \mathfrak{g} is of affine type or the GCM A is non-degenerate, then $\mathcal{E}(A)$ is always discrete (cf. [1]).

The map $\exp: \mathfrak{k} \to K^{\Lambda}$ is differentiable in the following sense.

Theorem 3.5. Let $x \in f$ and $v \in L(\Lambda)$. Then we have

$$(3.6) (d/dt)((\exp tx)v) = (\exp tx)(xv) (t \in \mathbf{R}).$$

In other words, every vector of $L(\Lambda)$ is differentiable. By this theorem, the differential of the natural action of K^{Λ} on $H(\Lambda)$ is the original action of f on $L(\Lambda)$, and so we have

Theorem 3.6. The natural action of K^{Λ} on $H(\Lambda)$ is irreducible.

- § 4. Group K_R^{Λ} associated with f_R . Let \mathfrak{p}_R be the (-1)-eigenspace of ω_0 in \mathfrak{g}_R . We list some facts about f_R , similar to those in the finite-dimensional case.
- i) The restriction of $(\cdot | \cdot)_0$ to f_R is positive definite, and so the standard invariant form $(\cdot | \cdot)$ is negative definite on f_R .

Indeed, $x \in \mathfrak{f}_R$ is written as $x = h + \sum_{\alpha \in J} x_\alpha$ with $h \in \mathfrak{h}_R$, $x_\alpha \in \mathfrak{g}^\alpha$, and

 $x=2^{-1}(x+\omega_0(x))=2^{-1}(h-h+\sum_{\alpha\in A}(x_\alpha+\omega_0(x_\alpha)))=\sum_{\alpha\in A}(x_\alpha+\omega_0(x_\alpha)).$ Since, $\omega_0(\mathfrak{g}^\alpha)=\mathfrak{g}^{-\alpha}$, the right hand side of the above equality belongs to $\sum_{\alpha\in A}\mathfrak{g}^\alpha$, on which $(\cdot\mid\cdot)_0$ is positive definite.

- ii) It is equal to the sum of f_R and $\sqrt{-1}p_R$.
- iii) f is generated by f_R and $\sqrt{-1}\mathfrak{h}_R$.

Let K_R^A be the closed subgroup of K^A generated by exp \mathfrak{k}_R .

Definition 4.1. We call K_R^4 the compact type group associated with f_R .

Remark. If g is finite-dimensional, then f_R is a compact Lie algebra and its complexification is a semisimple Lie algebra, and so a Kac-Moody algebra. But in the infinite-dimensional case, $C \otimes f_R = f_R + \sqrt{-1} f_R$ is not likely to be a Kac-Moody algebra, since $(\cdot \mid \cdot)_0$ is positive definite on it.

§ 5. Relations with the groups constructed on lowest weight modules. Let $\lambda \in \mathfrak{h}^*$. We denote by L_{λ}^* the left ideal of $U(\mathfrak{g})$ generated by \mathfrak{n}_{-} and $\{h+\lambda(h) \mid h \in \mathfrak{h}\}$, and put $M^*(\lambda) = U(\mathfrak{g})/L_{\lambda}^*$. Then, $M^*(\lambda)$ is the lowest weight Verma module with lowest weight $-\lambda$. Let $L^*(\lambda)$ be the unique irreducible

quotient of $M^*(\lambda)$. Denote by P^* the projection from $U(\mathfrak{g})$ onto $U(\mathfrak{h})$ along the decomposition $U(\mathfrak{g}) = U(\mathfrak{h}) \oplus (U(\mathfrak{g})\mathfrak{n}_- + \mathfrak{n}_+ U(\mathfrak{g}))$. By the same argument as in the case of $\langle \cdot | \cdot \rangle_{\lambda}$, if $\lambda \in \mathfrak{h}_R^*$, we see that the sesquilinear form

$$\langle x | y \rangle_{\lambda}^* = P^*(y^*x)(-\lambda) \qquad (x, y \in U(\mathfrak{g}))$$

is Hermitian and induces a non-degenerate contravariant Hermitian form $(\cdot | \cdot)_i^*$ on $L^*(\lambda)$.

We denote by the same symbol ω_0 the unique antilinear automorphism on $U(\mathfrak{g})$ induced by ω_0 on \mathfrak{g} . For $\lambda \in \mathfrak{h}_R^*$, it is clear that $\omega_0(L_\lambda) = L_\lambda^*$, and that the image of any left ideal of $U(\mathfrak{g})$ under w_0 is also a left ideal of $U(\mathfrak{g})$. Hence, ω_0 induces an antilinear bijection Ω_0 from $L(\lambda)$ onto $L^*(\lambda)$. Clearly Ω_0 satisfies

(5.2)
$$\Omega_0(xv) = \omega_0(x)\Omega_0(v) \qquad (x \in \mathfrak{g}, \ v \in L(\lambda)).$$

In particular, Ω_0 is f-equivariant. Furthermore, we obtain

Theorem 5.1. If $\lambda \in \mathfrak{h}_R^*$, we have

(5.3)
$$(\Omega_0(u) | \Omega_0(v))_{\lambda}^* = (v | u)_{\lambda} (u, v \in L(\lambda)).$$

Corollary 5.2. If $\Lambda \in \mathfrak{h}_R^*$ is dominant integral, then $(\cdot \mid \cdot)_A^*$ is positive definite.

Consider the case $\lambda = \Lambda$ is a dominant integral element of \mathfrak{h}_R^* . Let $H^*(\Lambda)$ be the completion of pre-Hilbert space $(L^*(\Lambda), (\cdot | \cdot)_A^*)$. We can construct a group associated with \mathfrak{f} on $H^*(\Lambda)$ in the same way as in § 3. By Theorem 5.1 and (5.2), we see that this group is isomorphic to K^{Λ} and that if we identify these groups through antilinear \mathfrak{f} -equivariance Ω_0 , then the action of K^{Λ} on $H^*(\Lambda)$ is the contragradient of that on $H(\Lambda)$. Thus,

Theorem 5.3. Let $\Lambda \in \mathfrak{h}_R^*$ be dominant integral. Then, K^{Λ} is represented unitarily and faithfully on $H^*(\Lambda)$. This representation is equivalent to the contagradient of the natural representation on $H(\Lambda)$.

Added in Proof. Recently, a similar evaluation as (3.1) and (3.1') is given by Mr. E. R. Carrington of Rutgers University. He kindly sent me a handwritten manuscript (without title), and I am grateful to him.

References

- [1] H. Garland: Publ. Math. IHES, 52, 185-189 (1980).
- [2] R. Goodman and N. R. Wallach: Journal für Mathematik, 347, 69-133 (1984).
- [3] V. G. Kac: Infinite dimensional Lie algebras. Birkhäuser, Boston (1983).
- [4] V. G. Kac and D. H. Peterson: Invent. Math., 76, 1-14 (1984).
- [5] D. H. Peterson and V. G. Kac: Proc. Nat. Acad. Sci. USA, 80, 1778-1782 (1983).
- [6] K. Suto: Groups associated with unitary forms of Kac-Moody algebras (preprint).