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The Kac-Moody groups associated with a given Kac-Moody algebra as
constructed by Peterson-Kac [5] have a disadvantage that the exponential
map can not be defined on the whole algebra. The present note gives a
partial solution to the problem to remedy the situation, by constructing
groups in the above title.

§1. Kac-Moody algebras. Let g be a Kac-Moody algebra and A the
corresponding generalized Cartan matrix (GCM). Let § be the Cartan sub-
algebra of g, 4 the root system of (g, Y), IT the set of simple roots, 4, the
set of positive roots with respect to 77, and W the Weyl group. We denote
by gz the Kac-Moody algebra over the real number field R corresponding
to the GCM A, and by Y the Cartan subalgebra of g. Then, g=C®g, and
)=C®Yr. There exists an involutive antilinear automorphism w, on g such
that
1.1 w(h)=—h (hebp),  wlg)=g" (aecd),
where g* is the a-root space (cf. [3, Chap. 2]). We denote by f and f; the
set of fixed points of w, in ¢ and gy respectively. Then, fr=fNgg. Since
w, is an involution, f is a real form of g as a Lie algebra. We call f the
unitary form of g and ¥z a compact type subalgebra of gp. If g is finite-
dimensional, then g is semisimple, f is a compact real form of g, and {; is a
maximal compact subalgebra of gp.

We assume throughout that the GCM A is symmetrizable (cf. [3]).
Then, there exists a symmetric bilinear form (-|-) on g, a standard in-
variant form, which is infinitesimally invariant under ad g. The restriction
of (-|-) to§is W-invariant and non-degenerate, and defines a W-equivariant
linear bijection v from § onto its dual *. We denote by the same symbol
(-]-) the induced bilinear form on §)*. Then we have

1.2 [z, Y= |y (@) (reg, yeg™, acd).
We define a sesquilinear form (- |-), on g as
(1.3) @|Po=—(|oy) (x,yeQ.

Then, according to [4, Theorem 1], (- |-), is Hermitian and its restriction
to each root space g* is positive definite.

Put n,=3,c,, g**. Then, they are both subalgebras of g, and we have
a triangular decomposition g=1n_®§Pn, (direct sum).

§2. Irreducible highest weight modules. Let 2¢h* and L, be the
left ideal of the enveloping algebra U(g) generated by n, and {h—2(k) |k € b}.
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Then, the left g-module M(2)=U(g)/L, is the Verma module for g with

highest weight 2. We denote by L(2) the unique irreducible quotient of M(2).
Let P be the projection from U(g) onto U(§) along the decomposition

U@ =U0®U@n,+n_U(g). Denote by ¢{-|->, the sesquilinear form on

U(g) defined by

(2.1) (x| y),=Py*x)(2) (z, y e Ug)),

where we identify U()) with the polynomial ring C[§*] on §*, and y—y* is

the unique antilinear antiautomorphism on U(g) which coincides with —w,

ong. If 2ebf, then (- |-), is Hermitian and its restriction to the largest

proper ideal of U(g) containing L, is identically zero. Hence, {-|-); induces

a Hermitian form (- |-), on L(2). Clearly, (-|-), has the following property,

called the contravariance of (-|-),.

2.2) (wu|v), =] x*v), (u, v e L(2), xeg).

Since the GCM A is assumed to be symmetrizable, (-|-), is positive
definite if 2 is dominant integral ([4, Theorem 1]).

§3. Construction of groups associated with the unitary form f. In
this section, we assume that 4 is a dominant integral element of §%. Let
¢ be a weight of L(4) and p an element of §} taking the value 1 on each
simple coroot. From the proof of positivity of (- |-),in [4, Theorem 1], we
get the following evaluation of the norm of n, -action,

3.1) lev[f<27( A+ pF—|utoP [z BllvlE,  (en,)

for any element v of the weight space L(4),, where, for 1€ b*, |2f=(2]2).
Making use of this inequality together with the formula (1.2), we obtain
an evaluation for the n_-action (this time depending on the root «) as

3.1) v B2 A+ P — |+ pP+2G ) 2[5 0

for xreg™, aed,, ve L(4),. From these evaluations, we have

Theorem 3.1. For any 0<e<1, there exists an absorbing, symmetric
and *-invariant subset B, of g such that for any v e L(A) there exists a
positive constant C=C, such that for any x € B,, we have
3.2) x| ,<Cm! ™ m=0,1,2, --.).

Hence, the series > o, |[(m 1) 'a™v ||, converges uniformly and is bounded on
B..

Let H(A) be the completion of the pre-Hilbert space (L(A), (-]|-),) and
B=\Uocec: B.. For any xe B, because of Theorem 3.1, we can define a
linear map exp « from L(/) into H(A) by
(3.3) (exp ¥)v=>a_,(m ) z"v (v e L(A)).

By the contravariance (2.2) of (- |-),, each element of f acts on L(4) as an
antisymmetric operator. Hence, if xe BN{, then exp x is an isometry.
More strongly,

Proposition 3.2. 1) For any x e BN, exp x is uniquely extended to
a unitary operator on H(A), and we have
(3.4) (exp x) '=exp (—2x).

ii) If two elements x and y in BNt commute with each other, then
exp z and exp y also commute. If x+ye BNT in addition, then we have
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(3.5) (exp z) (exp ¥) =exp (x+¥).

Let U(A) be the group of unitary operators on H(A) equipped with the
strong operator topology. By Proposition 3.2, the map exp from BN ¥ into
U(4) is naturally extended to the whole f. Let K4 be the closed subgroup
of U(/A) generated by exp f, and Hi=exp +/ — 1b.

Definition 3.3. We call K4 the compact type group associated with
the unitary form f, and H* the Cartan subgroup of K“.

If ¢ is finite-dimensional, then K is a compact Lie group with Lie
algebra f and H” is a maximal torus of K“. Even when g is infinite-
dimensional, H* is compact in many cases as follows.

Theorem 3.4. Let H(A) be the subgroup of §* generated by all the
wetghts of L(A). If B(A) is discrete, then H' is compact and the Pontrjagin
dual of H* is isomorphic to 5(A).

For instance, if g is of affine type or the GCM A is non-degenerate,
then 5(4) is always discrete (cf. [1]).

The map exp : f—K* is differentiable in the following sense.

Theorem 3.5. Let xctand ve L(A). Then we have
3.6) (d/dt)((exp tx)v) =(exp tx)(xv) (te R.

In other words, every vector of L(4) is differentiable. By this theorem,
the differential of the natural action of K* on H(/) is the original action of
f on L(A), and so we have

Theorem 3.6. The natural action of K* on H(A) is irreducible.

§ 4. Group K% associated with fz. Let p, be the (—1)-eigenspace of
w,ingr. Welist some facts about 5, similar to those in the finite-dimensional
case.

i) The restriction of (- | -), to {5 is positive definite, and so the standard
invariant form (- |-) is negative definite on {j.

Indeed, « € ¥, is written as x=h+> ,c, 2, With ke g, 2, € g, and
=272+ 0(1)) =2"(h—h+ e s (Xt 02 =D ues (B4 0(2,).
Since, w,(g*)=g"¢ the right hand side of the above equality belongs to

> e 8% on which (- | -), is positive definite.
ii) fis equal to the sum of f; and v/ — 1pg.

iii) fis generated by fr and v — 15g.

Let K% be the closed subgroup of K4 generated by exp {g.

Definition 4.1. We call K% the compact type group asscciated with
tr.

Remark. If gis finite-dimensional, then f; is a compact Lie algebra
and its complexification is a semisimple Lie algebra, and so a Kac-Moody
algebra. But in the infinite-dimensional case, C®f,=f,++ —1f; is not
likely to be a Kac-Moody algebra, since (- | -), is positive definite on it.

§5. Relations with the groups constructed on lowest weight modules.
Let 2¢5*. We denote by L} the left ideal of U(g) generated by n_ and
{h+4(h)| h € b}, and put M*(Q)=U(g)/L¥. Then, M*(2) is the lowest weight
Verma module with lowest weight —2. Let L*(2) be the unique irreducible
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quotient of M*(2). Denote by P* the projection from U(g) onto U(h) along
the decomposition U(g)=U®)P(U(g)n_+n,U(g)). By the same argument
as in the case of (- |.),, if 1¢ §%, we see that the sesquilinear form

(5.1) (e lyyF =P*(y*x)(—2) (z,ye U(g)

is Hermitian and induces a non-degenerate contravariant Hermitian form
(-] )F on L*(2).

We denote by the same symbol w, the unique antilinear automorphism
on U(g) induced by w, on g. For A¢ %, it is clear that o, (L,)=L¥, and that
the image of any left ideal of U(g) under w, is also a left ideal of U(g).
Hence, w, induces an antilinear bijection 2, from L(2) onto L*(2). Clearly
0, satisfies
(5.2) Qy(xv) = 0, (2)2,(v) (xeg, ve LQ).

In particular, 2, is f-equivariant. Furthermore, we obtain

Theorem 5.1. If 1€ %%, we have
(5.3) (2w | Ry(VNF = | W), (u, v € L(2)).

Corollary 5.2. If Ae b} is dominant integral, then (-|-)f is positive
definite.

Consider the case A=/ is a dominant integral element of §¥%. Let H*(A)
be the completion of pre-Hilbert space (L*(A4), (-|-)F). We can construct
a group associated with f on H*(/) in the same way as in § 3. By Theorem
5.1 and (5.2), we see that this group is isomorphic to K* and that if we
identify these groups through antilinear f-equivariance 2,, then the action
of K4 on H*(A) is the contragradient of that on H(4). Thus,

Theorem 5.3. Let Aecb% be dominant integral. Then, K* is repre-
sented unitarily and foithfully on H¥(A). This representation is equivalent
to the contagradient of the natural representation on H(A).

Added in Proof. Recently, a similar evaluation as (3.1) and (3.1") is
given by Mr. E. R. Carrington of Rutgers University. He kindly sent me
a handwritten manuscript (without title), and I am grateful to him.
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