69. Fluctuation of Spectra in Random Media

By Shin Ozawa
Department of Mathematics, Osaka University
(Communicated by Kôsaku Yosida, m. J. A., Sept. 12, 1986)

§ 1. Introduction. The Lenz shift phenomena were studied by various authors by various methods. See Kac [5] Huruslov-Marchenko [4], RauchTaylor [13], Papanicolaou-Varadhan [14], Ozawa [8], [9], [10], [12], ChavelFeldman [1]. In [3], Figari-Orlandi-Teta gave fluctuation result for the Lenz shift phenomena by developing the method of [8]. In [8], perturbative calculus using the Green function was offered. It turned out to be strong enough to consider fluctuation of spectra.

In the present note we give Theorem 1 on the Lenz shift.
We consider a bounded domain Ω in R^{3} with smooth boundary γ. We put $B(\varepsilon ; w)=\left\{x \in R^{3} ;|x-w|<\varepsilon\right\}$. Fix $\beta \geq 1$. Let

$$
0<\mu_{1}(\varepsilon ; w(m)) \leq \mu_{2}(\varepsilon ; w(m)) \leq \cdots
$$

be the eigenvalues of $-\Delta(=-\operatorname{div} \operatorname{grad})$ in the set $\Omega_{\varepsilon, w(m)}=\Omega \backslash \bigcup_{i=1}^{\tilde{m}} B\left(\varepsilon ; w_{i}^{(m)}\right)$ under the Dirichlet condition on its boundary. Here \tilde{m} denotes the largest integer which does not exceed m^{β} and $w(m)$ denotes the set of \widetilde{m}-points $\left\{w_{i}^{(n)}\right\}_{i=1}^{\tilde{m}} \in \Omega^{\tilde{m}}$. Let $V(x)>0$ be C^{0}-class function on Ω satisfying

$$
\int_{\Omega} V(x) d x=1
$$

We consider Ω as the probability space with a probability density $V(x)$. Let $\Omega^{\tilde{m}}=\prod_{i=1}^{\tilde{m}} \Omega$ be the probability space with the product measure. Fix $\alpha>0$. Then, $\mu_{j}\left(\alpha / m ; w(m)\right.$) is a random variable on $\Omega^{\tilde{m}}$. Our aim is to know a precise asymptotic behaviour of $\mu_{j}(\alpha / m ; w(m))$ as $m \rightarrow \infty$.

Main result is the following :
Theorem 1. Fix j. Assume $\beta \in[1,12 / 11$), $V(x)=1 /|\Omega|$ (const.). Assume that the j-th eigenvalue μ_{j} of the Laplacian in Ω under the Dirichlet condition on γ is simple. Then, the random variable

$$
\begin{equation*}
m^{1-(\beta / 2)}\left(\left(\mu_{j}(\alpha / m ; w(m))-\left(\mu_{j}+4 \pi \alpha m^{\beta-1}|\Omega|^{-1}\right)\right)\right) \tag{1}
\end{equation*}
$$

tends in distribution to Gaussian random variable Π_{j} of mean $E\left(\Pi_{j}\right)=0$ and variance

$$
E\left(\Pi_{j}^{2}\right)=4 \pi \alpha\left(\int_{\Omega} \varphi_{j}(x)^{4}|\Omega|^{-1} d x-\left(\int_{\Omega} \varphi_{j}(x)^{2}|\Omega|^{-1} d x\right)^{2}\right)
$$

as m tends to ∞. Here φ_{j} is the normalized eigenfunction associated with μ_{j}.

Remark. Figari-Orlandi-Teta's result (see [3]) is the case $\beta=1$. As a corollary of Theorem 1, we have

$$
\lim _{m \rightarrow \infty} \boldsymbol{P}\left(w(m) \in \Omega^{\tilde{n}} ;(1) \leq c\right)=\frac{1}{\sqrt{2 \pi v}} \int_{-\infty}^{c} e^{-t / 2 v} d t
$$

where $v=E\left(\Pi_{j}^{2}\right)$.

We make a comment on the Lenz shift. The Lenz shift can be stated as the following : In this case, $\beta=1$.

$$
\begin{equation*}
\mu_{j}(\alpha / m ; w(m))-\left(\mu_{j}+4 \pi \alpha|\Omega|^{-1}\right) \rightarrow 0 \tag{2}
\end{equation*}
$$

in probability. The formula (2) corresponds to a law of large numbers and Theorem 1 corresponds to the central limit theorem.

For other related topics, the readers may be referred to CioranescuMurat [2], Ozawa [6], [7], [11].
§ 2. Sketch of our proof of Theorem 1. Let $\mathcal{O}_{1}(m)$ be a subset of $w(m) \in \Omega^{\tilde{m}}$ satisfying the following :
$\mathcal{O}_{1}(m)$: Take an arbitrary open ball K of radius $m^{-\beta / 3}$ in R^{3}. Then, the number of balls such that $\overline{\mathrm{ball}} \cap K \neq \varnothing$ is at most $(\log m)^{2}$. We have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \boldsymbol{P}\left(w(m) \in \Omega^{\tilde{m}} ; \mathcal{O}_{1}(m) \text { holds }\right)=1 \tag{3}
\end{equation*}
$$

Owing to (3), we can restrict ourselves to $\mathcal{O}_{1}(m)$ to prove Theorem 1. By simple consideration on configuration $w(m)$ of the centers of balls, we see that there exists exactly one large connected component ω of $\Omega_{\alpha / m, w(m)}$ and we see that components other than ω are negligible to consider $\mu_{j}(\alpha / m ; w(m))$ as $m \rightarrow \infty$.

Put $\lambda=T m^{\beta-1}(T=$ constant $)$. Let $G(x, y)$ be the Green function of $-\Delta$ $+\lambda$ in Ω under the Dirichlet condition on γ. Let $G(x, y ; w(m))$ be the Green function of $-\Delta+\lambda$ in ω under the Dirichlet condition on $\partial \omega$.

We introduce the following integral kernel $h(x, y ; w(m))$: We abbreviate $w_{i}^{(m)}$ as w_{i}, and $G\left(w_{i}, w_{j}\right)$ as $G_{i j} . \quad$ Put $\lambda^{1 / 2} m^{-1}=\tau$, and $m^{*}=(\log m)^{2}$.
$h(x, y ; w(m))=G(x, y)+(-4 \pi \alpha / m) e^{\tau} \sum_{i=1}^{\tilde{m}} G\left(x, w_{i}\right) G\left(w_{i}, y\right)$

$$
+\sum_{s=1}^{m^{*}}(-4 \pi \alpha / m)^{s} e^{s \tau} \sum_{(s)} G\left(x, w_{i_{1}}\right) G_{i_{1} i_{2}} \cdots G_{i_{s-1} i_{s}} G\left(w_{i_{s}}, y\right) .
$$

Here the indices in $\Sigma_{(s)}$ run over all $1 \leq i_{1}, \cdots, i_{s} \leq \tilde{m}$ such that $i_{\nu} \neq i_{\mu}$ when $\nu \neq \mu$. The sum $\Sigma_{(s)}$ is called self-avoiding sum.

Put

$$
\left(\boldsymbol{H}_{w(m)} f\right)(x)=\int_{\omega} h(x, y ; w(m)) f(y) d y, \quad x \in \omega
$$

and

$$
\left(\tilde{\boldsymbol{H}}_{w(m)} g\right)(x)=\int_{\Omega} h(x, y ; w(m)) g(y) d y, \quad x \in \Omega .
$$

Let $\boldsymbol{G}_{w(m)}$ be the bounded linear operator on $L^{2}(\omega)$ defined by

$$
\left(\boldsymbol{G}_{w(m)} g\right)(x)=\int_{\omega} G(x, y ; w(m)) g(y) d y
$$

Let A denote the Green operator of $-\Delta+4 \pi \alpha|\Omega|^{-1} m^{\beta-1}+\lambda$ in Ω under the Dirichlet condition on γ.

Main line of our proof of Theorem 1 is comparison of $\boldsymbol{G}_{w(m)}$ with \boldsymbol{A}.
Let $\mathcal{O}_{2}(m)$ be a set of $w(m) \in \Omega^{\tilde{m}}$ satisfying the following :
$\mathcal{O}_{2}(m)$: There exists a constant C independent of m such that

$$
\begin{aligned}
& \sum_{(s+1)} \mid w_{i_{1}}-w_{i_{2}}{ }^{-2+\sigma} \exp \left(-\lambda^{1 / 2}\left|w_{i_{1}}-w_{i_{2}}\right|\right) G_{i_{2} i_{3}} \cdots G_{i_{s} i_{s+1}} \\
& \leq C^{s+1} \lambda^{-s+(1 / 2)(1-\sigma)} m^{\beta(s+1)}(\log m)^{3}
\end{aligned}
$$

holds for any $1 \leq s \leq(\log m)^{2}, \sigma=0,1$.
We have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \boldsymbol{P}\left(w(m) \in \Omega^{\tilde{n}} ; \mathcal{O}_{2}(m) \text { holds }\right)=1 \tag{4}
\end{equation*}
$$

We have the following Propositions.
Proposition 1. Assume that $w(m)$ satisfy $\mathcal{O}_{1}(m)$ and $\mathcal{O}_{2}(m)$. Fix an arbitrary $\varepsilon>0$. Then,

$$
\left\|\boldsymbol{G}_{w(m)}-\boldsymbol{H}_{w(m)}\right\|_{L^{2}(\omega)} \leq C m^{\beta-2+\varepsilon}
$$

holds for a constant C independent of m.
Proposition 2. Assume that $w(m)$ satisfy $\mathcal{O}_{1}(m)$ and $\mathcal{O}_{2}(m)$. Fix an arbitrary $\varepsilon>0$. Then,

$$
\left\|\tilde{\boldsymbol{H}}_{w(m)}-\chi_{\omega} \tilde{\boldsymbol{H}}_{w(m)} \chi_{\omega \omega}\right\|_{L^{2}(\Omega)} \leq C D(m) m^{\varepsilon},
$$ where χ_{ω} is the characteristic function of ω. Here

$$
D(m)=m^{(\beta-3) / 3}+m^{(3 \beta-5) / 2}+m^{2(\beta-3) / 3}+m^{\beta-2}+m^{(\beta-9) / 8} .
$$

Proposition 3. Fix an arbitrary positive $\varepsilon>0$. Then, the measure of the set $w(m)$ satisfying

$$
\left\|\tilde{\boldsymbol{H}}_{w(m)}-\boldsymbol{A}\right\|_{L^{2}(\Omega)} \leq m^{\varepsilon-(\beta / 2)} \boldsymbol{F}(m)
$$

tends to 1 as $m \rightarrow \infty$. Here $\boldsymbol{F}(m)=m^{1-(3 / 2) \beta}+m^{(1-3 \beta) / 4}+m^{-1 / 2}+m^{-(\beta-1) / 4}$.
We know that $\boldsymbol{G}_{w(m)}-\boldsymbol{H}_{w(m)}, \tilde{\boldsymbol{H}}_{w(m)}-\chi_{\omega} \tilde{\boldsymbol{H}}_{w(m)} \chi_{\omega}$ is negligible to consider fluctuation of spectra and that fluctuation arises from $\tilde{\boldsymbol{H}}_{w(m)}-\boldsymbol{A}$, if $\beta \in[1,12 / 11)$.

Details of this paper will be given in [12].

References

[1] I. Chavel and E. A. Feldman: The Riemannian Wiener sausage (preprint).
[2] D. Cioranescu and F. Murat: Un terme étrange venu d’ailleurs. Research Notes in Math. Pitman (1982).
[3] R. Figari, E. Orlandi, and S. Teta: J. Statistical Phys., 41, 465-487 (1985).
[4] E. Ja. Huruslov and V. A. Marchenko: Boundary Value Problems in Regions with Fine Grained Boundaries. Kiev (1974) (in Russian).
[5] M. Kac: Rocky Mountain J. Math., 4, 511-538 (1974).
[6] S. Ozawa: J. Fac. Sci. Univ. Tokyo, Sec. IA, 30, 53-62 (1983).
[7] —: ibid., 30, 259-277 (1983).
[8] -: Commun. Math. Phys., 91, 473-487 (1983).
[9] ——: ibid., 94, 421-437 (1984).
[10] --: Proc. Japan Acad., 60A, 343-344 (1984).
[11] -: Osaka J. Math., 22, 639-655 (1985).
[12] -: Fluctuation of spectra in random media. Proceedings of the Taniguchi International Symposium, Probabilistic Methods on Mathematical Physics (eds. K. Ito and N. Ikeda). Kinokuniya (1986).
[13] J. Rauch and M. Taylor: J. Funct. Anal., 18, 27-59 (1975).
G. C. Papanicolaou and S. R. S. Varadhan: Lect. Notes in Control and Information. vol. 75, Springer (1980).

