56. Discrepancy with respect to Weighted Means of Some Sequences

By Yukio Онкиво
Yakuendai Senior High School
(Communicated by Shokichi Iyanaga, m. J. A., May 12, 1986)

1. It is well-known that for irrational α 's of small type the sequences $(n \alpha), n=1,2, \cdots$, have uniformly low discrepancies [1: pp. 121-126]. In this note we shall show the connection between the type of α and the P discrepancy of the sequence $\left(a_{n} \alpha\right), n=1,2, \cdots$, where $\left(a_{n}\right)$ is a non-decreasing sequence of integers and the P-discrepancy is a generalized notion of discrepancy. Furthermore, we shall give a quantitative form of Theorem 8 of Tsuji [4] with respect to weighted uniform distribution mod 1. This result contains Theorem 4.1 of Niederreiter [3], Satz 3 of Niederreiter and Tichy [2] and Satz 3 of Tichy [5] as special cases.
2. Definition 1. Let $P=\left(p_{n}\right), n=1,2, \cdots$, be a sequence of nonnegative real numbers with $p_{1}>0$. For $N \geqq 1$, put $s_{N}=p_{1}+p_{2}+\cdots+p_{N}$. Given a sequence $\omega=\left(x_{n}\right), n=1,2, \cdots$, of real numbers and a positive integer N, the P-discrepancy $(\bmod 1)$ of the first N terms of ω is defined by

$$
D_{N}(P ; \omega)=\sup _{I}\left|\left(1 / s_{N}\right) \sum_{n=1}^{N} p_{n} c_{I}\left(\left\{x_{n}\right\}\right)-|I|\right|,
$$

where the supremum is taken over all intervals I in $[0,1), c_{I}$ is the characteristic function of $I,\left\{x_{n}\right\}$ is the fractional part of x_{n}, and $|I|$ is the length of I.

Definition 2. An irrational number α is said to be of constant type if there exists a constant $C>0$ such that for all integers $q>0, q\|q \alpha\| \geqq C$ holds, where $\|t\|=\min _{n \in \boldsymbol{Z}}|t-n|$ for $t \in \boldsymbol{R}$.

Definition 3. Let η be a positive real number or infinity. An irrational number α is said to be of type η if η is the supremum of all γ for which $\varliminf_{q \rightarrow \infty} q^{\gamma}\|q \alpha\|=0$, where q runs through positive integers.
3. Results. Let $p(t) \in C^{1}[1, \infty)$ be a positive, non-increasing function. We put $p_{n}=p(n)$ for $n=1,2, \cdots$. We assume throughout that $\lim _{N \rightarrow \infty} s_{N}$ $=\infty$. Putting $s(t)=\int_{1}^{t} p(u) d u$ for $t \geqq 1$, the partial sum s_{N} is asymptotically equal to $s(N)$ as $N \rightarrow \infty$.

Theorem 1. Let $g(t) \in C^{2}[1, \infty)$ be a positive, strictly increasing function satisfying the following conditions:
(1) $g(t) \rightarrow \infty$ as $t \rightarrow \infty$,
(2) $g^{\prime}(t) \rightarrow$ constant <1 monotonically as $t \rightarrow \infty$,
(3) $\quad g^{\prime}(t) / p(t)$ is monotone for $t \geqq 1$.

Then for $P=(p(n))$ and $\omega=([g(n)] \alpha)$ with α irrational, there exists an absolute constant C such that

$$
D_{N}(P ; \omega) \leqq C\left(\frac{1}{m}+\left(\frac{p(N)}{s(N) g^{\prime}(N)}+\frac{1}{s(N)} \int_{1}^{N} p(t) g^{\prime}(t) d t\right) \sum_{n=1}^{m} \frac{1}{h\|h \alpha\|}\right)
$$

for any positive integer m.
Corollary 1. Let α be an irrational number of finite type η and let $g(t)$ satisfy the same conditions as in Theorem 1 but (3). Then for every $\varepsilon>0$, we have for $P=\left(g^{\prime}(n)\right)$ and $\omega=([g(n)] \alpha)$

$$
D_{N}(P ; \omega) \ll\left(\frac{1}{g(N)} \int_{1}^{N}\left(g^{\prime}(t)\right)^{2} d t\right)^{(1 / n)-s} .
$$

Corollary 2. Let α be an irrational number of constant type and let $g(t)$ satisfy the same conditions as in Corollary 1. Then for $P=\left(g^{\prime}(n)\right)$ and $\omega=([g(n)] \alpha)$, we have

$$
G(N) D_{N}(P ; \omega) \ll \log ^{2} G(N),
$$

where $G(N)=g(N) / \int_{1}^{N}\left(g^{\prime}(t)\right)^{2} d t$.
Theorem 2. Let $g(t)$ satisfy the same conditions as in Theorem 1. Then for $P=(p(n))$ and $\omega=(g(n))$, we have

$$
D_{N}(P ; \omega) \ll \frac{1}{s(N)} \int_{1}^{N} p(t) g^{\prime}(t) d t+\frac{p(N)}{s(N) g^{\prime}(N)} .
$$

Corollary 3. Let $\omega=\left(\alpha n^{\delta} \log ^{\mathrm{c}} n\right)$ with $\alpha>0,0 \leqq \delta<1$ and τ such that $\lim _{n \rightarrow \infty} n^{8} \log ^{\boldsymbol{r}} n=\infty$. Then for $P=(1 / n)$, we have

$$
D_{N}(P ; \omega) \ll 1 / \log N .
$$

4. To prove Theorem 1, we need a well-known theorem.

Lemma (Erdös-Turán [1, p. 114]). There exists an absolute constant C such that

$$
D_{N}(P ; \omega) \leqq C\left((1 / m)+\sum_{n=1}^{m}(1 / h)\left|\left(1 / s_{N}\right) \sum_{n=1}^{N} p_{n} e^{2 \pi i t x_{n}}\right|\right)
$$

for any sequence $\omega=\left(x_{n}\right)$ of real numbers and any positive integer m.
Proof of Theorem 1. Since $g(t)$ is strictly increasing for $t \geqq 1$ and $g(t) \rightarrow \infty(t \rightarrow \infty), g(t)$ has an inverse function $f(t), t \geqq 1$. Let m_{j} be the smallest integer $\geqq f(j)$. For any integer $N \geqq 1$, there exists an integer $k \geqq 1$ such that $N=m_{k}+r$ with $0 \leqq r<m_{k+1}-m_{k}$. For any positive integer h, we have

$$
\begin{aligned}
\sum_{n=1}^{N} p(n) e(h[g(n)] \alpha) & =\sum_{n=1}^{m_{k}-1} p(n) e(h[g(n)] \alpha)+\sum_{n=m_{k}}^{m_{k}+r} p(n) e(h[g(n)] \alpha) \\
& =I_{k}+R_{k}, \quad \text { say },
\end{aligned}
$$

where $e(x)=e^{2 \pi t i s}$ for real x. Since $f(j+1)-f(j) \geqq 1 / g^{\prime}(f(j))$, by condition (2) there exists an integer j_{0} such that $m_{j+1}-m_{j} \geqq 1$ for $j \geqq j_{0}$. Hence we may assume without loss of generality that $\mathrm{m}_{j+1}-m_{j} \geqq 1$ for $j \geqq 1$. Now we have

$$
I_{k}=\sum_{j=1}^{k-1}\left(\sum_{n=m_{j}}^{m_{j}+1-1} p(n)\right) e(h j \alpha)+O(1)=\sum_{j=1}^{k-1} q_{j} e(h j \alpha)+O(1),
$$

where $q_{j}=\sum_{n=m_{j}}^{m_{j}+1} p(n)$. By Euler's summation formula, we have

$$
q_{j}=\int_{f(j)}^{f(j+1)} p(t) d t+O(p(f(j)))=q_{j}^{\prime}+O(p(f(j))),
$$

where

$$
q_{j}^{\prime}=\int_{f(j)}^{f(j+1)} p(t) d t=\int_{j}^{j+1} \frac{p(f(t))}{g^{\prime}(f(t))} d t .
$$

By condition (3), it follows that (q_{j}^{\prime}) is monotone for $j \geqq 1$. Hence, we get

$$
\begin{aligned}
\left|I_{k}\right| \mid & =\left|\sum_{j=1}^{k-2}\left(q_{j}-q_{j+1}\right) \sum_{m=1}^{j} e(h m \alpha)+q_{k-1} \sum_{m-1}^{k-1} e(h m \alpha)+O(1)\right| \\
& \leqq \frac{1}{|\sin (\pi h \alpha)|}\left(\sum_{j=1}^{k-2}\left|q_{j}-q_{j+1}\right|+\left|q_{k-1}\right|+O(1)\right) \\
& \leqq \frac{1}{|\sin (\pi h \alpha)|}\left(\sum_{j=1}^{k-2}\left|q_{j+1}^{\prime}-q_{j}^{\prime}\right|+\left|q_{k-1}^{\prime}\right|+O\left(\sum_{j=1}^{k-1} p(f(j))\right)+O(1)\right) \\
& \leqq \frac{1}{|\sin (\pi h \alpha)|}\left(2 q_{k-1}^{\prime}+O\left(\sum_{j=1}^{k-1} p(f(j))+O(1)\right)\right) \\
& \leqq \frac{1}{|\sin (\pi h \alpha)|}\left(2 \frac{p(f(k))}{g^{\prime}(f(k))}+\int_{1}^{(g) N} p(f(t)) d t+O(1)\right) \\
& \leqq \frac{1}{|\sin (\pi h \alpha)|}\left(2 \frac{p(N)}{g^{\prime}(N)}+\int_{1}^{N} p(t) g^{\prime}(t) d t+O(1)\right) .
\end{aligned}
$$

Using also Euler's summation formula, by condition (3), we have

$$
\begin{equation*}
\left|R_{k}\right| \leqq \frac{p(N)}{g^{\prime}(N)}+O(1) \tag{5}
\end{equation*}
$$

From (4) and (5) we arrive at

$$
\begin{aligned}
\left|\sum_{n=1}^{N} p(n) e(h[g(n)] \alpha)\right| \leqq & \frac{1}{|\sin (\pi h \alpha)|}\left(2 \frac{p(N)}{g^{\prime}(N)}+\int_{1}^{N} p(t) g^{\prime}(t) d t+O(1)\right) \\
& +\frac{p(N)}{g^{\prime}(N)}+O(1)
\end{aligned}
$$

Since $1 /|\sin (\pi h \alpha)| \leqq 1 / 2\|h \alpha\|$ for $h \geqq 1$, by Lemma we get the desired inequality.
Q.E.D.
5. Proof of Corollary 1. Let $\varepsilon>0$ be fixed. It is known that

$$
\sum_{n=1}^{m} \frac{1}{h\|h \alpha\|}=O\left(m^{\eta-1+\varepsilon}\right), \quad \text { (see [1], p. 123). }
$$

Combining this with Theorem 1, we obtain

$$
D_{N}(P ; \omega) \ll \frac{1}{m}+\frac{\int_{1}^{N}\left(g^{\prime}(t)\right)^{2} d t}{g(N)} m^{\eta-1+\varepsilon}
$$

If we choose $m=\left[\left(g(N) / \int_{1}^{N}\left(g^{\prime}(t)\right)^{2} d t\right)^{1 / n}\right]$, then we get the desired result.
Q.E.D.

Proof of Corollary 2. It is known that

$$
\sum_{h=1}^{m} \frac{1}{h\|h \alpha\|}=O\left(\log ^{2} m\right), \quad(\text { see [1], p. 124) }
$$

Applying Theorem 1, we obtain

$$
D_{N}(P ; \omega)=O\left(\frac{1}{m}+\frac{\log ^{2} m}{G(N)}\right)
$$

If we choose $m=[G(N)]$, we get the desired result.
Q.E.D.
6. Applying Euler's summation formula, Theorem 2 follows by the same argument as in [2].

If in Corollary 1 we assume that

$$
\int_{1}^{N}\left(g^{\prime}(t)\right)^{2} d t=O(1), \quad \text { then we get } D_{N}(P ; \omega) \ll(g(N))^{-(1 / \eta)+\varepsilon} .
$$

This estimate is sharp in the sense that under the same assumptions as in Corollary 1, for every $\varepsilon>0$, we have $D_{N}(P ; \omega)=\Omega\left(g(N)^{\left.-(1 / \eta)^{-\varepsilon}\right)}\right.$. By the same reasoning as in the proof of Theorem 3.3 in [1], this Ω-result can be proved.

References

[1] Kuipers, L. and Niederreiter, H.: Uniform Distribution of Sequences. New York, John Wiley and Sons (1974).
[2] Niederreiter, H. and Tichy, R. F.: Beiträge zur Diskrepanz bezüglich gewichteter Mittel. Manuscripta Math., 42, 85-99 (1983).
[3] Niederreiter, H.: Almost-arithmetic progressions and uniform distribution. Trans. Amer. Math. Soc., 161, 283-292 (1971).
[4] Tsuji, M.: On the uniform distribution of numbers mod. 1. J. Math. Soc. Japan, 4, 313-322 (1952).
[5] Tichy, R. F.: Diskrepanz bezüglich gewichteter Mittel und Konvergenzverhalten von Potenzreihen. Manuscripta Math., 44, 265-277 (1983).

