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Yakuendai Senior High School

(Communicated by Shokichi IYANAGA, M. J. A., May 12, 1986)

1. It is well-known that for irrational a’s of small type the sequences
(na), n=1, 2, ..., have uniformly low discrepancies [1: pp. 121-126]. In
this note we shall show the connection between the type of « and the P-
discrepancy of the sequence (a,@), n=1, 2, - . -, where (a,) is a non-decreas-
ing sequence of integers and the P-discrepancy is a generalized notion of
discrepancy. Furthermore, we shall give a quantitative form of Theorem
8 of Tsuji [4] with respect to weighted uniform distribution mod 1. This
result contains Theorem 4.1 of Niederreiter [3], Satz 3 of Niederreiter and
Tichy [2] and Satz 3 of Tichy [5] as special cases.

2. Definition 1. Let P=(p,), n=1,2, -.-, be a sequence of non-
negative real numbers with p,>0. For N>1, put sy=p,4+ 0.4+ - +px.
Given a sequence w=(x,), n=1, 2, ---, of real numbers and a positive
integer N, the P-discrepancy (mod 1) of the first N terms of v is defined by

D,(P; w)=sgp (1/sx) nﬁ:jl pac; ({2 —|11),

where the supremum is taken over all intervals I in [0, 1), ¢; is the charac-
teristic function of I, {x,} is the fractional part of x,, and |I| is the length
of 1.

Definition 2. An irrational number « is said to be of constant type
if there exists a constant C>0 such that for all integers ¢>0, q|qa||=C
holds, where ||t||=min,¢z|t—n| for t e R.

Definition 3. Let 5 be a positive real number or infinity. An irra-
tional number « is said to be of type 7 if 5 is the supremum of all 7 for
which lim, ... ¢" || qa||=0, where ¢ runs through positive integers.

3. Results. Let p(t) € C'[1, =) be a positive, non-increasing function.
We put p,=p®) for n=1,2, --.. We assume throughout that lim,_.. s,

=oo. Putting s(t)=yp(u)du for t=1, the partial sum s, is asymptotically
. .
equal to s(N) as N—oo.

Theorem 1. Let g(t) € C*[1, oo) be a positive, strictly increasing func-
tion satisfying the following conditions :

(1) g(t)—>co as t—oo,
(2) 9'(t)—constant <1 monotonically as t—co,
(3) g’/ p(t) is monotone for t=1.

Then for P=(p(n)) and o= (gn)la) with « irrational, there exists an abso-
lute constant C such that
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. 1 P(N) ’
DyP; wso( L +(S(N)g,(N) S(N)j PO BE) S,

for any positive integer m.

Corollary 1. Let a be an irrational number of finite type 5 and let
g(t) satisfy the same conditions as in Theorem 1 but (3). Then for every
>0, we have for P=(g'(n)) and o=_[g(n)]a)

Dy(P; w)<<(g](—1Nf J.:V (9'(t))2dt>(l/”)_‘.

Corollary 2. Let a be an irrational number of constant type and let
g(t) satisfy the same conditions as in Corollary 1. Then for P=(9’(n)) and
o=(gm)]a), we have

kil hall )

G(N)Dy(P; w)Klog? G(N),
where GN)=g(N) / f (¢ (®)dt.

Theorem 2. Let g(t) satisfy the same conditions as in Theorem 1.

Then for P=(p(n)) and o= (g(n)), we have
/ PN)
Dy(P; o)< (N) [ ptrgrtrat + O

Corollary 3. Let o=(an’log’n) with «>0, 0<6<1 and z such that

lim,_. 7’ log"n=0c0. Then for P=(1/n), we have
D,(P; w)g1/logN.

4. To prove Theorem 1, we need a well-known theorem.

Lemma (Erdos-Turén [1, p. 114]). There exists an absolute constant
C such that

Dy(P; a))__<_.C<(1/m)+fZ=_,"1 @1/h) (1/81")”% p, & ihen

for any sequence w=(x,) of real numbers and any positive integer m.

Proof of Theorem 1. Since g(t) is strictly increasing for t =1 and
g(t)— oo (t—00), g(t) has an inverse function f(¢), t=1. Let m, be the
smallest integer> f(). For any integer N=1, there exists an integer k=1
such that N=m,+r with 0<r<m,,,—m,. For any positive integer &, we
have

N mp—1 me+r
2, pe(hlg(m)]a) = 2 p(n)e(hlg(n)le) + ankp(n)e(h[g(n)]a)
=I,+R,, say,
where e(x)=e*"** for real z. Since f(j+1)—f()=1/9'(f(5)), by condition
(2) there exists an integer j, such that m,,,—m,>1 for j=j,. Hence we
may assume without loss of generality that m,,,—m,>1 for j=1. Now
we have

L=3 (75 ) Jethia) + 0= 3 g,e(hio) +0D),
where ¢ ,_Z::‘f;;; p(n) By Euler’s summatlon formula, we have

0= ; : " p@)dt+ 0B N =)+ 0@ D),
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where

P L _( 2@
a=[,, vodi=[ sGaen®

By condition (8), it follows that (¢}) is monotone for j=1. Hence, we get
- j k-1
L= |5 €=, 3 ethma)+,.. 3, e(hma)+O0(D)

~—_—IW(];r—hfoz)r(Z:Iq/ QJ+ll+|qk—ll+O(1)>
1 ’ k-1 .
ém( qk_1+0<jz;=i p(f(j))+0(1)))
1 p(f(k)) &N
= |sin (zha)| (2 (k) +f p(f (t))dt+0(1)>
1 (920N

< g’ )dt+0(1 )
i i o) +j PO ()dt+OL)
Using also Euler’s summation formula, by condition (8), we have

5 R|< PN L oa
(%) | Ryl ’(N)+ @).

From (4) and (5) we arrive at

(22D o (" itre'
53 pmeilgmle| <o (2 500+ [Tt @at+o)

P(N)
+-= ) +0().
Since 1/|sin (zha)|<1/2| ha|| for h=1, by Lemma we get the desired ine-
quality. Q.E.D.
5. Proof of Corollary 1. Let ¢>0 be fixed. It is known that

1
Z - = p-1+e 1 . )
=1 h“h ” O(“I’ ), (see [ ], Y 123)

Comblnlng this with Theorem 1, we obtain

f (@' tyydt

D,(P; a))<< mrire,
Y 9@
If we choose m= [(g(N) / j (9'(®)* dt)w], then we get the desired result.
1
Q.E.D.
Proof of Corollary 2. It is known that
> _ 1 =0(og*m), (see [1], p. 124).
i hilhal

Applying Theorem 1, we obtain

Dy(P; w)= o( +1;g(2\’;)‘>

If we choose m=[G(N)], we get the desired result. Q.E.D.
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6. Applying Euler’s summation formula, Theorem 2 follows by the
same argument as in [2].

If in Corollary 1 we assume that
'[N (@'(®)*dt=0(1), then we get Dy(P; o) (9(N))~/n+e,
1

This estimate is sharp in the sense that under the same assumptions as in
Corollary 1, for every ¢e>0, we have Dy(P; 0)=2(g(N)"/»~¢), By the same
reasoning as in the proof of Theorem 3.3 in [1], this 2-result can be proved.
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