44. On the Kazhdan-Lusztig Conjecture for Kac-Moody Algebras

By Kiyokazu SUTO Department of Mathematics, Kyoto University (Communicated by Shokichi IYANAGA, M. J. A., April 14, 1986)

Let g be a Kac-Moody algebra over C and h a Cartan subalgebra of g. Let $\rho \in h^*$ be an element which takes the value 1 on each simple coroot and W the Weyl group of g. We denote by $M(\lambda)$ and $L(\lambda)$ the Verma module with highest weight $\lambda \in h^*$ and the unique irreducible quotient of $M(\lambda)$ respectively.

If the generalized Cartan matrix (GCM) corresponding to g is symmetrizable, then it was proved in [3] analogously to the (finite-dimensional) complex semisimple case that for any dominant integral element $\lambda \in \mathfrak{h}^*$ and $y \in W$, all the irreducible subquotients of $M(y(\lambda + \rho) - \rho)$ are $L(w(\lambda + \rho) - \rho)$ with $w \in W$ such that $w \ge y$, and that multiplicities mtp $(y, w) = [M(y(\lambda + \rho) - \rho) : L(w(\lambda + \rho) - \rho)]$ are independent of λ . Here \le is the standard partial order on the Coxeter group W in which the unit is the smallest element. Note that mtp (y, w) = 0 if $y \le w$.

In case where g is finite-dimensional, the following proposition on these multiplicities, well-known as the Kazhdan-Lusztig conjecture, was proved in [2] and in [1] independently.

Theorem A [5, Conjecture 1.5]. Let g be a complex semisimple Lie algebra. Under the same notations as above,

$$\mathrm{mtp}\left(y,\,w\right) = P_{y,\,w}(1)$$

holds for all y, $w \in W$ such that $y \leq w$, where $P_{y,w}$ are the Kazhdan-Lusztig polynomials for the Coxeter group W.

Kazhdan-Lusztig polynomials were introduced in [5], related to a base change of Hecke algebras of Coxeter groups, and there were given inductive formulas to compute these polynomials.

Deodhar, Gabber and Kac conjectured in [3] that the same result as Theorem A holds for Kac-Moody algebras of infinite-dimension as follows.

Conjecture B [3, Conjecture 5.16]. Let g be a Kac-Moody algebra corresponding to a symmetrizable GCM. Then

 $mtp(y, w) = P_{y, w}(1)$

holds for all $y, w \in W$ such that $y \leq w$.

In this paper, we prove this conjecture is true for certain pairs (y, w), by reducing it to the finite-dimensional case. Even when the GCM is not symmetrizable, this holds for $\lambda = 0$, the most important case. We give further a branching rule of Verma modules over a non-twisted affine Lie algebra with respect to a certain subalgebra. §1. Some properties of Kac-Moody algebras. Let Δ be the root system of \mathfrak{g} , and $\mathfrak{g}=\mathfrak{h}+\sum_{\alpha\in \mathfrak{I}\mathfrak{G}_{\alpha}}\mathfrak{g}_{\alpha}$ the root space decomposition. Let $\Pi = \{\alpha_1, \dots, \alpha_n\}$ (resp. $\Pi^{\vee} = \{\alpha_1^{\vee}, \dots, \alpha_n^{\vee}\}$) be the set of simple roots (resp. simple coroots). See [4, §1] for detail. We put $Q_+ = \sum_{1\leq i\leq n} \mathbb{Z}_{\geq 0}\alpha_i$ and define a partial order on \mathfrak{h}^* by

 $\lambda \geq \mu$ if and only if $\lambda - \mu \in Q_+$ ($\lambda, \mu \in \mathfrak{h}^*$).

We denote by \mathcal{A}_+ the set of all the positive roots with respect to \leq .

For a g-module M and $\mu \in \mathfrak{h}^*$, we denote by M_{μ} the weight space of weight μ . Let P(M) be the set of weights of M. We define a category \mathcal{O} of g-modules as follows. The objects of \mathcal{O} are g-modules M satisfying the following conditions.

(i) $M = \sum_{\mu \in \mathfrak{h}^*} M_{\mu}$ and dim $M_{\mu} < +\infty$ for all $\mu \in \mathfrak{h}^*$.

(ii) There exists a finite subset F of \mathfrak{h}^* such that $\mu \leq \nu$ for some $\nu \in F$ for any $\mu \in P(M)$.

The morphisms of \mathcal{O} are g-homomorphisms.

We see that all the highest weight modules are objects of \mathcal{O} , and so $M(\lambda)$ and $L(\lambda)$ are objects of \mathcal{O} for all $\lambda \in \mathfrak{h}^*$. Any object of \mathcal{O} has a local composition series as follows.

Proposition C [3, Proposition 3.2]. Let $M \in \mathcal{O}$ and $\lambda \in \mathfrak{h}^*$. There exist a finite sequence $0 = M_0 \subset M_1 \subset \cdots \subset M_t = M$ of g-submodules of M and a subset J of $\{1, \dots, t\}$ such that

 $\begin{array}{ll} M_{j}/M_{j-1} \simeq L(\lambda_{j}) & for some \ \lambda_{j} \ge \lambda & if \ j \in J, \\ (M_{j}/M_{j-1})_{\mu} = 0 & for \ any \ \mu \ge \lambda & if \ j \in J. \end{array}$

We call this sequence a local composition series of M at λ .

Let $M \in \mathcal{O}$ and $\mu \in \mathfrak{h}^*$. Take a $\lambda \in \mathfrak{h}^*$ such that $\mu \geq \lambda$. Let $0 = M_0 \subset M_1 \subset \cdots \subset M_t = M$ be a local composition series at λ . Then, the multiplicity $[M: L(\mu)]$ is the number of $j \in J$ such that $\lambda_j = \mu$. This number is independent of λ and the local composition series.

§ 2. Kazhdan-Lusztig conjecture. Let $A = (a_{ij})_{1 \le i,j \le n}$ be the GCM of g. We take a subset I of the index set $\{1, \dots, n\}$ of such that $A_I = (a_{ij})_{i,j \in I}$ is the Cartan matrix of a complex semisimple Lie algebra g_I . We put

$$\begin{split} \mathfrak{h}_{I} &= \sum_{i \in I} \boldsymbol{C} \alpha_{i}^{\vee}, \qquad Q_{I} = \sum_{i \in I} \boldsymbol{Z} \alpha_{i}, \\ \boldsymbol{\Delta}_{I} &= \boldsymbol{\Delta} \cap Q_{I}, \quad \boldsymbol{\Delta}_{I,+} = \boldsymbol{\Delta}_{+} \cap Q_{I}, \quad \mathfrak{n}_{I,\pm} = \sum_{a \in \boldsymbol{\Delta}_{I,+}} \mathfrak{g}_{\pm a}. \end{split}$$

We see that $n_{I,-} + h_I + n_{I,+}$ is a subalgebra of g isomorphic to g_I . Identify g_I with this subalgebra, then, h_I is a Cartan subalgebra of g_I , $n_{I,+}$ a nilradical of a Borel subalgebra containing h_I , and so on.

We define a category \mathcal{O}_I of \mathfrak{g}_I -modules by replacing \mathfrak{g} and \mathfrak{h} with \mathfrak{g}_I and \mathfrak{h}_I respectively in the definition of \mathcal{O} . Denote by $M_I(\lambda)$ and $L_I(\lambda)$ the Verma module over \mathfrak{g}_I with highest weight $\lambda \in \mathfrak{h}_I^*$ and the unique irreducible quotient of $M_I(\lambda)$, respectively.

We consider the quotients \mathfrak{h}^*/Q_I as additive groups. Let $M \in \mathcal{O}$ and $\Lambda \in \mathfrak{h}^*/Q_I$. Put $M^{\Lambda} = \sum_{\lambda \in \Lambda} M_{\lambda}$. Then, $M^{\Lambda} \in \mathcal{O}_I$ and M decomposes into a direct sum of M^{Λ} 's as a \mathfrak{g}_I -module. Moreover, $\mathcal{O} \ni M \mapsto M^{\Lambda} \in \mathcal{O}_I$ is an exact functor for any $\Lambda \in \mathfrak{h}^*/Q_I$. For each $\lambda \in \mathfrak{h}^*$, we denote by $[\lambda]$ the residue

class in \mathfrak{h}^*/Q_I containing λ . Then, we have

Theorem 1. Let M be a highest weight module over \mathfrak{g} with highest weight $\lambda \in \mathfrak{h}^*$. Then, $M^{[\lambda]}$ is a highest weight module over \mathfrak{g}_I with highest weight $\lambda | \mathfrak{h}_I$. Moreover we have

- (i) $M(\lambda)^{[\lambda]} \simeq M_I(\lambda | \mathfrak{h}_I),$
- (ii) $L(\lambda)^{[\lambda]} \simeq L_I(\lambda | \mathfrak{h}_I).$

Let λ , $\lambda' \in \mathfrak{h}^*$ and $\lambda - \lambda' \in Q_I$. By applying the functor $\mathcal{O} \ni M \mapsto M^{[\lambda]} \in \mathcal{O}_I$ to a local composition series of $M(\lambda)$ at λ' and using Theorem 1, we have the following theorem.

Theorem 2. Let λ , $\lambda' \in \mathfrak{h}^*$ and $\lambda - \lambda' \in Q_I$. Then, the following equality holds

 $[M(\lambda): L(\lambda')] = [M_I(\lambda | \mathfrak{h}_I): L_I(\lambda' | \mathfrak{h}_I)].$

Let W_I be the Weyl group of $(\mathfrak{g}_I, \mathfrak{h}_I)$. Then, W_I can be canonically identified with a subgroup of W, and the standard order on W_I as a Coxeter group coincides with that induced from W.

Let ρ_I be half the sum of all the elements of $\Delta_{I,+}$. We can prove that $(y\rho-\rho)|\mathfrak{h}_I=y\rho_I-\rho_I$ for all $y\in W_I$, and that the pair $(\lambda,\lambda')=(y\rho-\rho,w\rho-\rho)$ satisfies the condition $\lambda-\lambda'\in Q_I$ for any $y,w\in W_I$. Therefore, if $y,w\in W_I$ and $y\leq w$, Conjecture B is reduced to Theorem A by Theorem 2. Thus, we get one of our main results as follows.

Theorem 3. Let $A = (a_{ij})_{1 \leq i,j \leq n}$ be a GCM, and g the Kac-Moody algebra corresponding to A. Let I be a subset of $\{1, \dots, n\}$ such that $A_I = (a_{ij})_{i,j \in I}$ is the Cartan matrix of a complex semisimple Lie algebra. Under the same notations as above,

$$M(y\rho - \rho): L(w\rho - \rho)] = P_{y,w}(1)$$

holds for all y, $w \in W_I$ such that $y \leq w$.

Note that the symmetrizability of the GCM A is not assumed here.

§3. Affine Lie algebras. Now, we concentrate on a special case. Let g_0 be a complex simple Lie algebra, and \mathfrak{h}_0 a Cartan subalgebra of g_0 . Denote by \mathcal{A}_0 the root system of $(\mathfrak{g}_0, \mathfrak{h}_0)$. Let $C[t, t^{-1}]$ be the algebra of Laurent polynomials in t with coefficients in C. We put $\mathfrak{g}=Cd\oplus Cc\oplus (C[t, t^{-1}]\otimes_C g_0)$, and define the bracket in g by

 $[c, g] = 0, \quad [d, P \otimes x] = t(dP/dt) \otimes x,$

 $[P \otimes x, P' \otimes x'] = \operatorname{Res}\left((dP/dt)P'\right)K(x, x')c + PP' \otimes [x, x']$

for all $P, P' \in C[t, t^{-1}]$, $x, x' \in \mathfrak{g}_0$. Here, Res (P) is the coefficient of t^{-1} in P, and $K(\cdot, \cdot)$ is the Killing form on \mathfrak{g}_0 . \mathfrak{g} is called a *non-twisted* affine Lie algebra, and is one of Kac-Moody algebras. We can (and do) identify \mathfrak{g}_0 with the subalgebra $1 \otimes \mathfrak{g}_0$ of \mathfrak{g} . In this identification, the Cartan subalgebra \mathfrak{h} of \mathfrak{g} is $Cd + Cc + \mathfrak{h}_0$. Regard \mathfrak{h}_0^* as a subspace of \mathfrak{h}^* by $\lambda(d) = \lambda(c) = 0$ for $\lambda \in \mathfrak{h}_0^*$, then, $\mathcal{L}_0 \subset \mathcal{L}$. We denote by $M_0(\lambda)$ the Verma module over \mathfrak{g}_0 with highest weight $\lambda \in \mathfrak{h}_0^*$, and $L_0(\lambda)$ the unique irreducible quotient of $M_0(\lambda)$.

We take \mathfrak{g}_0 as the subalgebra \mathfrak{g}_I introduced before Theorem 1. Then, the Verma module $M(\lambda)$ $(\lambda \in \mathfrak{h}^*)$ decomposes into a direct sum of $M(\lambda)^{\lfloor \lambda - j\delta \rfloor}$'s with $j \in \mathbb{Z}_{\geq 0}$ as a \mathfrak{g}_0 -module, where $\delta \in \mathfrak{h}^*$ is defined by $\delta(d) = 1$, $\delta(c) = 0$, $\delta \mid \mathfrak{h}_0$

No. 4]

=0. So, the following theorem gives a complete branching rule of $M(\lambda)$ as a g_0 -module, together with Theorem 1.

Theorem 4. Fix a positive integer j. Let $\{\gamma_1, \dots, \gamma_s\}$ be the set of elements in $\mathbb{Z}\Delta_0$ which can be written as a sum of j elements in $\Delta_0 \cup \{0\}$, numbered as k < l if $\gamma_k > \gamma_l$. Then, there exists an increasing sequence $0 = M^{(0)} \subset M^{(1)} \subset \cdots \subset M^{(s)} = M(\lambda)^{\lfloor \lambda - j \delta \rfloor}$

of \mathfrak{g}_0 -submodules of $M(\lambda)^{[\lambda-j\delta]}$ such that $M^{(k)}/M^{(k-1)}$ is isomorphic to a direct sum of $\mathcal{P}_0(-\Upsilon_k+j\delta)$ -copies of $M_0(\lambda|\mathfrak{h}_0+\Upsilon_k)$ for every $k=1, \cdots, s$. Here, for each $\alpha \in Q_+$, we put

$$D = \{ (\beta, k) \in (\mathcal{A}_+ \setminus \mathcal{A}_0) \times Z | 1 \leq k \leq \dim \mathfrak{g}_{\beta} \},$$

$$\mathcal{P}_0(\alpha) = \# \{ \tau : D \longmapsto Z_{\geq 0} | \alpha = \sum_{(\beta, k) \in D} \tau(\beta, k) \beta \}.$$

By this theorem, the problem of computing multiplicities of irreducible subquotients of Verma modules over g is reduced to the problem of determining the branching rule of irreducible highest weight modules over g as g_0 -modules. Solving this problem, we will get a useful tool to study Conjecture B in full generality for this type of g.

The author is grateful to Prof. T. Hirai for his useful advice and kind encouragement.

References

- A. Beilinson and J. Bernstein: Localisation de g-modules. C. R. Acad. Sci. Paris, 292, 15-18 (1981).
- [2] J. L. Brylinski and M. Kashiwara: Démonstration de la conjecture de Kazhdan-Lusztig sur les modules de Verma. ibid., 291, 373-376 (1980).
- [3] V. V. Deodhar, O. Gabber and V. G. Kac: Structure of some categories of representations of infinite dimensional Lie algebras. Adv. in Math., 45, 92-116 (1982).
- [4] V. G. Kac: Infinite Dimensional Lie Algebras. Birkhäuser, Boston (1983).
- [5] D. A. Kazhdan and G. Lusztig: Representations of Coxeter groups nad Hecke algebras. Invent. Math., 53, 165-184 (1979).