39. On a Criterion for Hypoellipticity

By Yoshinori Morimoto
Department of Engineering Mathematics, Nagoya University
(Communicated by Kôsaku Yosida, m. J. A., April 14, 1986)

Introduction and main theorems. In this note we give a sufficient condition for second order differential operators to be hypoelliptic. The condition is also necessary for a special class of differential operators.

Let Ω be an open set in R^{n} and let $P=p\left(x, D_{x}\right)$ be a second order differential operator with real valued coefficients in $C^{\infty}(\Omega)$. Let (u, v) denote the inner product of u, v in L^{2} and $\|u\|^{2}=(u, u)$. Let $\|\cdot\|_{s}$ denote the Sobolev space H_{s} for real s.

Theorem 1. Assume that for any $\varepsilon>0$ and any compact set K of Ω there is a constant $C_{\varepsilon, K}$ such that

$$
\begin{equation*}
\left\|\left(\log \left\langle D_{x}\right\rangle\right)^{2} u\right\| \leqq \varepsilon\|P u\|+C_{\varepsilon, K}\|u\|, \quad u \in C_{0}^{\infty}(K), \tag{1}
\end{equation*}
$$

where $\log \left\langle D_{x}\right\rangle$ denotes a pseudodifferential operator with a symbol $\log \langle\xi\rangle$, $\langle\xi\rangle^{2}=|\xi|^{2}+1$. Assume that the estimate

$$
\begin{align*}
& \sum_{j=1}^{n}\left(\left\|P^{(j)} u\right\|^{2}+\left\|P_{(j)} u\right\|_{-1}^{2}\right) \tag{2}\\
& \leqq C\left(\operatorname{Re}(P u, u)+\|u\|^{2}\right), \quad u \in C_{0}^{\infty}(K)
\end{align*}
$$

holds for a constant $C=C_{K}$, where $P^{(j)}=\partial_{\xi_{j}} p(x, \xi)$ and $P_{(j)}=D_{x_{j}} p(x, \xi)$. Then P is hypoelliptic in Ω. Furthermore we have WF Pu=WF u for $u \in \mathscr{D}^{\prime}(\Omega)$.

We remark that the hypothesis of (2) is removable if the principal symbol of P is non-negative. The estimate (1) is not always necessary for the hypoellipticity. We have a counter example $D_{x_{1}}^{2}+\exp \left(-1 /\left|x_{1}\right|^{0}\right) D_{x_{2}}^{2}$ for $\delta \geqq 1$ given by [1] (cf. [6]). However, for a class of differential operators, the estimate (1) is necessary to be hypoelliptic. The result is extendible to operators of higher order. Let m be an even positive integer and let P_{0} be a differential operator of the form

$$
\begin{equation*}
P_{0}=D_{t}^{m}+\mathscr{A}\left(x, D_{x}\right) \quad \text { in } R_{t} \times R_{x}^{n} \tag{3}
\end{equation*}
$$

where $\mathcal{A}\left(x, D_{x}\right)$ is a differential operator of order m with C^{∞}-coefficients and formally self-adjoint in an open set Ω of R_{x}^{n}. We assume that $\mathcal{A}\left(x, D_{x}\right)$ admits a positive self-adjoint realization $(A, D(A))$ in $L^{2}(\Omega)$.

Theorem 2. Let P_{0} be the operator defined above. Assume that P_{0} is hypoelliptic in $R_{t} \times \Omega$. Then for any $\left(t_{0}, x_{0}\right) \in R_{t} \times \Omega$ one can find a neighborhood ω of x_{0} satisfying the following: For any $\varepsilon>0$ there is a constant C_{ε} such that
(4) $\quad\left\|\left(\log \left\langle D_{t}, D_{x}\right\rangle\right)^{m / 2} u\right\|^{2} \leqq \varepsilon \operatorname{Re}\left(P_{0} u, u\right)+C_{\varepsilon}\|u\|^{2}, \quad u \in C_{0}^{\infty}\left(R_{t} \times \omega\right)$.

We remark that when $m=2$ the estimate (1) follows from (4) by means of the partition of unity over K and the replacement of u by $\left(\log \left\langle D_{t}, D_{x}\right\rangle\right) u$.

Our two theorems are applicable to the hypoellipticity for operators considered in [8] and [9]. Especially, an application shows that $D_{t}^{2}+D_{x_{1}}^{2}$ $+\exp \left(-1 /\left|x_{1}\right|^{\delta}\right) D_{x_{2}}^{2}, \delta>0$, is hypoelliptic in R^{3} if and only if $\delta<1$ (cf. Theorem 8.41 of [4]). As another application we give:

Theorem 3. Set $P_{1}=D_{t}^{2}+x_{2}^{2} D_{x_{1}}^{2}+D_{x_{2}}^{2}+D_{x_{3}}\left(\sigma\left(x_{1}\right) \tau\left(x_{3}\right)\right) D_{x_{3}}$, where $\sigma, \tau \in C^{\infty}$, $\tau>0, \sigma(0)=0, \sigma(s)>0(s \neq 0)$ and $s \sigma^{\prime}(s) \geqq 0$. Then P_{1} is hypoelliptic in R^{4} if and only if $\sigma(s)$ satisfies

$$
\begin{equation*}
\lim _{s \rightarrow 0}\left|s^{1 / 2} \log \sigma(s)\right|=0 \tag{5}
\end{equation*}
$$

When τ is the constant the necessity of (5) can be also proved by the similar method as in [8].

1. Proof of Theorem 1. Let $h(x) \in C_{0}^{\infty}\left(R^{n}\right)$ be 1 for $|x| \leqq 1 / 2$ and vanish for $|x| \geqq 3 / 4$. Write $p(x, \xi)=\sum_{k=0}^{2} p_{k}(x, \xi)$, where p_{k} is positively homogeneous in ξ of degree k. For $\gamma \equiv\left(x_{0}, \bar{\xi}_{0}\right) \in \Omega \times S^{n-1}$ we consider a differential operator

$$
\begin{equation*}
P_{r}=p_{r}\left(\lambda y, \lambda D_{y}\right)=\sum_{k=0}^{2} p_{k}\left(x_{0}+\lambda y, \bar{\xi}_{0}+\lambda D_{y}\right) \lambda^{-2 k} \tag{6}
\end{equation*}
$$

with a small parameter $\lambda>0$ (see $\S 3$ of [2] and $\S 2$ of [7]). Substituting $u=h\left(x-x_{0}\right) h\left(\lambda^{2} D_{x}-\bar{\xi}_{0}\right) v\left(\lambda^{-1}\left(x-x_{0}\right)\right) \exp \left(i \lambda^{-2} x \cdot \bar{\xi}_{0}\right), v \in \mathcal{S}$, into (1) and (2) we have :

Lemma 1. If (1) and (2) hold then for any real $s>0$ and any $\gamma=\left(x_{0}, \bar{\xi}_{0}\right)$ $\in \Omega \times S^{n-1}$ there are a constant $\lambda_{0}=\lambda_{0}(s, \gamma)$ and a constant C_{r} independent of s such that with $H=h\left(\lambda D_{y}\right) h(\lambda y)$ and $H_{0}=h\left(\lambda D_{y} / 2\right) h(\lambda y / 2)$ we have

$$
\begin{gather*}
\left(\log \lambda^{-s}\right)^{2}\|H v\|+\left(\log \lambda^{-s}\right) \sum_{j=1}^{n}\left(\left\|H P_{r}^{(j)} v\right\|+\lambda^{2}\left\|H P_{(j)} v\right\|\right) \tag{7}\\
\leqq C_{r}\left\|H_{0} P_{r} v\right\|+C(s, \gamma)\|(1-H) v\|, \quad v \in \mathcal{S},
\end{gather*}
$$

if $0<\lambda \leqq \lambda_{0}$, where $C(s, \gamma)$ is a constant independent of λ.
Set $h_{\delta}(x)=h(x / \delta)$ for a small $0<\delta \leqq 1 / 8$. Using (7) repeatedly we show that for reals $s, s^{\prime}, \kappa>0$ there is a constant $C=C\left(s, s^{\prime}\right)$ independent of κ such that
(8) $\quad\left\|\Lambda_{k, k} h_{\delta}\left(x-x_{0}\right) u\right\|_{s} \leqq C\left(\left\|\Lambda_{k, k} h_{2 \delta}\left(x-x_{0}\right) P u\right\|_{s}+\|u\|_{-s^{\prime}}\right), \quad u \in C_{0}^{\infty}$,
where $k=s+s^{\prime}+2$ and $\Lambda_{k, k}$ is a pseudodifferential operator with a symbol $(1+\kappa\langle\xi\rangle)^{-k}$. The detail of the proof will be given elsewhere.
2. Proof of Theorem 2. The method used here is only a version of the one in [5] p. 840-849, where non-analytic hypoellipticity for operators of the same form as (3) was studied (see Corollaries 3.6-7 of [5]). For the proof it suffices to derive the following estimate with $r=1 / 2$ (cf. (3.10) of [5])

$$
\begin{equation*}
\left\|\left(\log \left\langle D_{x}\right\rangle\right)^{m r} u\right\|^{2} \leqq \varepsilon\left\|A^{r} u\right\|^{2}+C_{\varepsilon}\|u\|^{2}, \quad u \in C_{0}^{\infty}(\omega) . \tag{9}
\end{equation*}
$$

We may assume x_{0} is the origin. We use the same notation as in [5]. Let $\psi \in C_{0}^{\infty}(\Omega)$ equal 1 in $\Pi=((-a, a))^{n} \in \Omega$. The hypothesis of the hypoellipticity implies that $u \in G^{1}(\Omega ; \mathcal{A}) \Rightarrow \psi u \in \mathcal{S}$ and hence $u \in D_{\partial}^{1}(A) \Rightarrow \psi u \in \mathcal{S}$ for a fixed $\delta>0$. The Banach closed graph theorem shows that for any integer $k>0$ there is a constant M_{k} such that

$$
\begin{equation*}
\sup _{\xi}\left|\langle\xi\rangle^{2 k} \widehat{\psi} u(\xi)\right| \leqq M_{k}\left(N_{\bar{\delta}}^{1}(u)\right)^{1 / 2}, \quad u \in D_{\bar{\delta}}^{1}(A) \tag{10}
\end{equation*}
$$

In view of (3.4) of [5], it is clear that for any k there is a constant $M_{k}^{\prime} \geqq 1$ such that

$$
\begin{equation*}
J_{k}^{L}(u) \leqq e^{2 k}\left\|(L+1)^{k} u\right\|_{L^{2}(\Pi)}^{2} \leqq M_{k}^{\prime}\left\|\langle\xi\rangle^{2 k} \widehat{\psi} u\right\|^{2} \tag{11}
\end{equation*}
$$

where $J_{k_{k}}^{L}(u)$ denotes $J_{k}(u)$ defined from the spectrum resolution of L. Here ($L, D(L)$) is the realization of Legendre operator $\sum_{j=1}^{n} \partial_{x_{j}}\left(x_{j}^{2}-a^{2}\right) \partial_{x_{j}}$ (see [5] p. 845). In what follows, to make clear the correspondence to A or L we often use the super script. Set $K_{k}=\left\{\xi ;\langle\xi\rangle \geqq M_{k}^{\prime} M_{k+2}\right\}$. Then from (10) and (11) we have

$$
\begin{align*}
J_{k}^{L}(u) \leqq & \left\|\left(M_{k}^{\prime} M_{k+2} /\langle\xi\rangle\right) M_{k^{2}}^{-1}\langle\xi\rangle^{2 k+2} \widehat{\psi u}\langle\xi\rangle^{-1}\right\|_{L^{2}\left(K_{k}\right)}^{2} \tag{12}\\
& +M_{k}^{\prime}\left\|\langle\xi\rangle^{2 k} \widehat{\psi u}\right\|_{L^{2}\left(R_{\xi}^{2} K_{k}\right)}^{2} \\
\leqq & N_{\dot{\delta}}^{1}(u)+C_{k}\|u\|_{L^{2}(\Omega)}^{2}, \quad u \in D_{\delta}^{1}(A),
\end{align*}
$$

with a constant C_{k}. Set $u(t)=F^{A}(t) u$. Then the estimate (12) and Lemma 3.1 of [5] show that for any $r>0$ and $k>0$

$$
\begin{align*}
I_{r, k}(u(\cdot)) & \equiv \int_{1}^{\infty}\left\{\exp \left(-\delta(\mathrm{e} t)^{1 / m}\right) J_{k}^{L}(u(t))+\|u(t)\|_{L^{2}(I)}^{2}\right) t^{2 r} \frac{d t}{t} \tag{13}\\
& \leqq 2 J_{r}^{A}(u)+C_{k}^{\prime}\|u\|_{L^{2}(\Omega)}^{2}, \quad u \in D\left(A^{r}\right)
\end{align*}
$$

holds with a constant C_{k}^{\prime}. We need replace Lemma 3.2 of [5] by
Lemma 2. Let $t \rightarrow u(t)$ be a measurable mapping from $[1, \infty)$ to $L^{2}(I I)$ and let $I_{r, k}(u(\cdot))$ denote the integral defined by the formula (13). Assume that for reals $\delta>0, r>0$ and an integer $k>0$ the integral $I_{r, k}(u(\cdot))$ is bounded. Then the integral $u=\int_{1}^{\infty} u(t)(d t / t)$ is convergent, $u \in D\left((\log (L+1))^{m r}\right)$ and for a constant C independent of k we have

$$
\begin{equation*}
k^{2 m r}\left\|(\log (L+1))^{m r} u\right\|_{L^{2}(I)}^{2} \leqq C I_{r, k}(u(\cdot)) \tag{14}
\end{equation*}
$$

The proof of the lemma is parallel if we set $\sigma(t, \lambda)=\exp (2 k \log \lambda$ $\left.-\delta \mathrm{e}^{1 / m} t^{1 / m}\right)$ and $t(\lambda)=\mathrm{e}^{-1}((k / \delta) \log \lambda)^{m}$. We note that

$$
\left\|(\log (L+1))^{r} u\right\|_{L^{2}(I)}^{2} \leqq \int_{1}^{\infty}(\log \lambda)^{2 r}\left\|F^{L}(\lambda) u\right\|_{L^{2}(I)}^{2} \frac{d \lambda}{\lambda}
$$

holds similarly to (3.4) of [5]. Set $\omega=((-a / 2, a / 2))^{n}$. Then there is a constant C such that
(15) $\quad\left\|\left(\log \left\langle D_{x}\right\rangle\right)^{m r} u\right\|^{2} \leqq C\left(\left\|(\log (L+1))^{m r} u\right\|^{2}+\|u\|^{2}\right), \quad u \in C_{0}^{\infty}(\omega)$, because we have $(\log (L+1))^{m r}=(L+1)(L+1)^{-1}(\log (L+1))^{m r}$ and, in ω, $(L+1)^{-1}(\log (L+1))^{m r}$ equals a pseudodifferential operator modulo smoothing operator with principal symbol $(l+1)^{-1}(\log (l+1))^{m r}, \quad l=l(x, \xi)=$ $\sum_{j=1}^{n}\left(a^{2}-x_{j}^{2}\right) \xi_{j}^{2}$ (cf. Chapter 8 of [3]). Since we can take any large k, from (13)-(15) we obtain (9).
3. Proof of necessity of (5). In view of the proof of Theorem 2 we may use (9) instead of (4). We employ the localized form of (9) with $r=1$ as follows : for $0<\lambda \leqq 1$

$$
\begin{align*}
\left(\log \lambda^{-1}\right)^{4}\|v\|^{2} \leqq & \leqq\left\|A_{r} v\right\|^{2}+C_{\varepsilon}\left(\|v\|^{2}\right. \tag{16}\\
& +\lambda^{-8}\left(\sum_{|\alpha| \leq 4}\left\|\exp (-1 / \lambda|y|)\left(\lambda D_{y}\right)^{\alpha} v\right\|^{2}\right. \\
& \left.+\sum_{|\alpha|=4}\left\|\left(\lambda D_{y}\right)^{\alpha} v\right\|^{2}\right), \quad v \in C_{0}^{\infty},
\end{align*}
$$

where A_{r} is defined from $\mathcal{A}\left(x, D_{x}\right)$ by the same way as for P_{r}. Set $\gamma=\left(0, \bar{\xi}_{0}\right), \bar{\xi}_{0}=(0,0,1)$. Take a change of variables $\lambda y_{1}=\kappa\left(\log \lambda^{-1}\right)^{-2} \widetilde{y}_{1}, \lambda y_{2}$ $=\kappa\left(\log \lambda^{-1}\right)^{-1} \tilde{y}_{2}, y_{3}=\tilde{y}_{3}$, where $\kappa>0$ is a small parameter. Then the estimate (16) after the change of variables shows the necessity of (5) by means of the reductive absurdity.

References

[1] V. S. Fedií: On a criterion for hypoellipticity. Math. USSR Sb., 14, 15-45 (1971).
[2] L. Hörmander: Subelliptic operators. Seminar on Singularities of Solutions of Linear Partial Differential Equations. Princeton University Press, pp. 127-208 (1979).
[3] H. Kumano-go: Pseudo-differential Operators. MIT Press (1982).
[4] S. Kusuoka and D. Strook: Applications of the Malliavin calculus, Part II. J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 1-76 (1985).
[5] G. Métivier: Propriété des iterés et ellipticité. Comm. in Partial Differential Equations, 3, 827-876 (1978).
[6] Y. Morimoto: On the hypoellipticity for infinitely degenerate semi-elliptic operators. J. Math. Soc. Japan, 30, 327-358 (1978).
[7] -: On hypoelliptic operators with multiple characteristics of odd order. Osaka J. Math., 20, 237-255 (1983).
[8] -: Non-hypoellipticity for degenerate elliptic operators. Publ. RIMS Kyoto Univ., 22, 25-30 (1986).
[9] -: Hypoellipticity for infinitely degenerate elliptic operators (preprint).

