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1o Introduction. In this article we shall study the nonlinear wave
equation
( 1 ttt--Uxx--g(t)--f(x, t), (X, t) e (0, 7c)
( 2 u(0, t) =u(z, t)=0, t e R,
( 3 ) u(x, t + T)=u(x, t), (x, t) e (0, ) R,
where T0 is a rational multiple of z, g(s) is a continuous unction on R
and f(x, t) is a given T-periodic unction of t.

Many mathematicians concerned with this problem (see [1], [7] and its
references). Except or [2, 3, 6, 11, 12] they ask that g(s) is monotonic,
in order to overcome the lack of compactness due to the fact that the kernel
of the wave operator 3--3 is infinite dimensional.

Working in a restricted class H of unctions satisfying some symmetry
properties and such that

( ) H Ker (--3)-- {0},
(ii) H is invariant under 3--3 and g,

J. M. Coron [3] proved the existence of multiple T-periodic solutions of
(1)-(3) in case f_0 and the existence of forced vibrations under the condi-
tion f e H without assumption of monotonicity. See also N. Basile and
M. Mininni [2].

On the other hand, M. Willem [11, 12] and H. Hofer [6] also dealt with
the problem (1)-(3) without the monotonicity assumption. They tackled
the infinite dimensional kernel of 3-3 without introducing restricted
classes. Under the ollowing nonresonance condition"

For consecutive eigenvalues fl of --(-) and

(4) or some constants e)0, r0,

a/e_(s) =</_ or
s

and some additional conditions, they proved that (1)-(3) is almost solvable
(1)-(3) possesses a solution or a dense set of f’s in L, in other words, the
range o the operator’u-u-Uxx/g(u) is dense in L. Their arguments
are based on the variational methods; [11, 12] used I. Ekeland’s variational
principles (c.f. [4]), [6] used Leray-Schauder theory in conjunction with
the variational method. Note that under the condition (4) the solutions of
(1)-(3) are a priori bounded in L. See also K. Tanaka [10].

This paper is an extension o [6, 10, 11, 12] and deals with the case
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that g(s) is superlinear (i. e., g(s)/s--co as ls]oo). Furthermore, we need
not assume that a(a--3)= {]--(2u/T)k ] N, k e Z} is a discrete set of R.
In particular, T/z e Q is not assumed. In the arguments of [6, 10, 11, 12]
it is essential that a(a-a) is discrete. Our main result is as ollows"

Theorem. Assume that there exist constants C, C>O such that

5 ) G(s)-- .[ g(r)dr Csg(s)+C for all s R,

6 lim (s)_ .
Then, (1)-(3) is almost solvable, i. e., (1)-(3) possesses a solution for a dense
set of f’s in L.

Remarks. 1. Under the conditions (5), (6), we do not have a priori
estimates or solutions of (1)-(3) (c. f. [7, 8, 9]). 2. H. Brzis [1] conjec-
tured that when g(u)=u, problem (1)-(3) possesses a solution--even infi-
nitely many solutions--for every f (or at least for a dense set of f’s). Our
result shows that the weakest statement of his conjecture is true. Con-
cerning the existence of infinitely many periodic solutions, we refer to
K. Tanaka [8, 9].

To prove Theorem, as in [10] we shall approximate the wave equation

(1)-(3) by the nonlinear telegraph equations:

8 ) u(0, t) =u(=, t)=0, t e R,
9 ) u(x, t+ T)=u(x, t), (x, t) e (0, =) R,
or 0. Leray-Schauder theory ensures the existence of a solution u of

(7)-(9). We shall prove Theorem by showing ]]eu.0.
2. Proof of Theorem. Let C be the real vector space of arbitrarily

often continuously differentiable functions in (0, =)R, which are T-
periodic in t and satisfy u(0, t)=u(, t)=0 or all t. We denote by L the
completion of C with respect to the norm lu[=(u, u)/, where (u, v)

=[ uv dx dt, 9=(0, =) (0, T). Furthermore, let X be the completion of
JJ

C" with respect to the norm

llullx sup (lUx(X, t)l+lut(x, t)l)dx
t[O,T

that is, X is the space of T-periodic functions which belong to C(R; H(O, ))
C(R; L(O, )).
A function u e X is said to be a weak solution of (7)-(9) if and only if

(, ----)+(g(u), )=(fi ) for all e C. The following proposition
is a special case of A. Haraux [5].

Proposition. Assume that >0, f e L and g(s) satisfies for some con-

stants >0, C>O, C>O,
(10) g(s)s-(1-#)s-Cs for all s,
(11) G(s) C(1+ s + sg(s)) for all s.

Then, there exists a weak solution ue X of (7)-(9).
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Proof of Theorem. Let f e C. Note that (10)and (11) ollow rom
(5) and (6). Therefore there exists a weak solution u e X of (7)-(9).

We multiply the telegraph equation (7) by u, integrate over 9, then
we get
(12)
Note that

+ (g(u), u) u + (f, u).

(u- Uix+ g(u), u)

G(u)) dx] dt
--0.

Hence multiplying the telegraph equation (7) by u, we obtain
(13)
From (12) and (13), we find

By the assumption (6), or anyL1 there exists a constant C)0 such that
g(s)sL--C or all s.

From (14) we get

=-2- 11 II+ llf I+ llull.
Hence

2llfll + -llf + c
]y (13), we obtain

< (L--1)-’/ ( 1 1 i

Passing to the limit, we get

Since we can choose L>I arbitrarily large, we obtain

u0 strongly in L as 0,
i.e.,

u;--u+g(u) ;+f f in L as 0.
Thus any f e C belongs to the L-closure of the range o the operator:
u--u+g(u). Since C is dence in L, the proo is completed.

Remark. In the above argument, any property o a(a-a), is not
used. So we can get similar result or the equation:
(15) u-Uxx+ g(u) f(x, t), (x, ) D X R,
(16) u(x, t)=0, (x, t) eaD X R,
(17) u(x, + T)=u(x, t), (x, ) D X R,
where DcR (N2) is a bounded domain with a smooth boundary aD.
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Similarly to the proof of Theorem, we can prove almost solvability of (15)-
(17) under assumptions (5), (6) and
(18) [g(s)l<=C(1 +Is]p) for all s e R,
for some constants p<(N/N--2) (p<oo if N=2) and C>0. Here the con-
dition (18) ensures compactness of the operator: u-+g(u); X-+L2.
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