37. Density of the Range of a Wave Operator with Nonmonotone Superlinear Nonlinearity

By Kazunaga TANAKA

Department of Mathematics, Nagoya University

(Communicated by Kôsaku Yosida, m. j. a., April 14, 1986)

1. Introduction. In this article we shall study the nonlinear wave equation:

(1)	$u_{tt} - u_{xx} + g(u) = f(x, t),$	$(x, t) \in (0, \pi) \times \mathbf{R},$
(2)	$u(0, t) = u(\pi, t) = 0,$	$t\in {oldsymbol R}$,
(3)	u(x, t+T) = u(x, t),	$(x, t) \in (0, \pi) \times \mathbf{R},$
-	 	

where T > 0 is a rational multiple of π , g(s) is a continuous function on **R** and f(x, t) is a given T-periodic function of t.

Many mathematicians concerned with this problem (see [1], [7] and its references). Except for [2, 3, 6, 11, 12] they ask that g(s) is monotonic, in order to overcome the lack of compactness due to the fact that the kernel of the wave operator $\partial_t^2 - \partial_x^2$ is infinite dimensional.

Working in a restricted class \tilde{H} of functions satisfying some symmetry properties and such that

(i) $\tilde{H} \cap \operatorname{Ker} \left(\partial_t^2 - \partial_x^2\right) = \{0\},\$

(ii) \tilde{H} is invariant under $\partial_t^2 - \partial_x^2$ and g,

J. M. Coron [3] proved the existence of multiple *T*-periodic solutions of (1)-(3) in case $f \equiv 0$ and the existence of forced vibrations under the condition $f \in \tilde{H}$ without assumption of monotonicity. See also N. Basile and M. Mininni [2].

On the other hand, M. Willem [11, 12] and H. Hofer [6] also dealt with the problem (1)-(3) without the monotonicity assumption. They tackled the infinite dimensional kernel of $\partial_t^2 - \partial_x^2$ without introducing restricted classes. Under the following *nonresonance* condition:

For consecutive eigenvalues $\alpha < \beta$ of $-(\partial_t^2 - \partial_x^2)$ and

(4) for some constants $\varepsilon > 0$, r > 0,

$$\alpha + \varepsilon \leq \frac{g(s)}{s} \leq \beta - \varepsilon$$
 for $|s| \geq r$,

and some additional conditions, they proved that (1)-(3) is almost solvable; (1)-(3) possesses a solution for a dense set of f's in L^2 , in other words, the range of the operator: $u \rightarrow u_{tt} - u_{xx} + g(u)$ is dense in L^2 . Their arguments are based on the variational methods; [11, 12] used I. Ekeland's variational principles (c.f. [4]), [6] used Leray-Schauder theory in conjunction with the variational method. Note that under the condition (4) the solutions of (1)-(3) are a priori bounded in L^2 . See also K. Tanaka [10].

This paper is an extension of [6, 10, 11, 12] and deals with the case

that g(s) is superlinear (i. e., $g(s)/s \to \infty$ as $|s| \to \infty$). Furthermore, we need not assume that $\sigma(\partial_t^2 - \partial_x^2) = \{j^2 - (2\pi/T)^2k^2; j \in \mathbb{N}, k \in \mathbb{Z}\}$ is a discrete set of \mathbb{R} . In particular, $T/\pi \in \mathbb{Q}$ is not assumed. In the arguments of [6, 10, 11, 12] it is essential that $\sigma(\partial_t^2 - \partial_x^2)$ is discrete. Our main result is as follows:

Theorem. Assume that there exist constants C_1 , $C_2 > 0$ such that

(5)
$$G(s) \equiv \int_0^s g(\tau) d\tau \leq C_1 s g(s) + C_2 \quad \text{for all } s \in \mathbf{R},$$

$$\lim_{|s|\to\infty}\frac{g(s)}{s}=\infty$$

Then, (1)–(3) is almost solvable, i. e., (1)–(3) possesses a solution for a dense set of f's in L^2 .

Remarks. 1. Under the conditions (5), (6), we do not have a priori estimates for solutions of (1)-(3) (c. f. [7, 8, 9]). 2. H. Brézis [1] conjectured that when $g(u)=u^3$, problem (1)-(3) possesses a solution—even infinitely many solutions—for every f (or at least for a dense set of f's). Our result shows that the weakest statement of his conjecture is true. Concerning the existence of infinitely many periodic solutions, we refer to K. Tanaka [8, 9].

To prove Theorem, as in [10] we shall approximate the wave equation (1)-(3) by the nonlinear telegraph equations:

(7)
$$u_{tt} - u_{xx} + \varepsilon u_t + g(u) = f(x, t),$$
 $(x, t) \in (0, \pi) \times \mathbf{R},$
(8) $u(0, t) = u(\pi, t) = 0,$ $t \in \mathbf{R},$
(9) $u(x, t+T) = u(x, t),$ $(x, t) \in (0, \pi) \times \mathbf{R},$

for $\varepsilon > 0$. Leray-Schauder theory ensures the existence of a solution u^{ε} of (7)-(9). We shall prove Theorem by showing $\|\varepsilon u_t^{\varepsilon}\| \rightarrow 0$.

2. Proof of Theorem. Let C^{∞} be the real vector space of arbitrarily often continuously differentiable functions in $(0, \pi) \times \mathbf{R}$, which are *T*periodic in *t* and satisfy $u(0, t) = u(\pi, t) = 0$ for all *t*. We denote by L^2 the completion of C^{∞} with respect to the norm $||u|| = (u, u)^{1/2}$, where (u, v) $= \iint_{\mathcal{Q}} uv \, dx \, dt, \, \mathcal{Q} = (0, \pi) \times (0, T)$. Furthermore, let *X* be the completion of C^{∞} with respect to the norm

$$\|u\|_{x} = \sup_{t \in [0,T]} \left\{ \int_{0}^{\pi} (|u_{x}(x, t)|^{2} + |u_{t}(x, t)|^{2}) dx \right\}^{1/2},$$

that is, X is the space of T-periodic functions which belong to $C(\mathbf{R}; H_0^1(0, \pi))$ $\cap C^1(\mathbf{R}; L^2(0, \pi)).$

A function $u \in X$ is said to be a *weak solution* of (7)–(9) if and only if $(u, \phi_{tt} - \phi_{xx} - \varepsilon \phi_t) + (g(u), \phi) = (f, \phi)$ for all $\phi \in C^{\infty}$. The following proposition is a special case of A. Haraux [5].

Proposition. Assume that $\varepsilon > 0$, $f \in L^2$ and g(s) satisfies for some constants $\delta > 0$, $C_1 > 0$, $C_2 > 0$,

- (10) $g(s)s \ge -(1-\delta)s^2 C_1|s| \quad for \ all \ s,$
- (11) $G(s) \le C_2(1+s^2+sg(s))$ for all s.

Then, there exists a weak solution $u^{\varepsilon} \in X$ of (7)-(9).

Proof of Theorem. Let $f \in C^{\infty}$. Note that (10) and (11) follow from (5) and (6). Therefore there exists a weak solution $u^{\varepsilon} \in X$ of (7)-(9).

We multiply the telegraph equation (7) by u^{ϵ} , integrate over Ω , then we get

(12)
$$\|u_x^{\varepsilon}\|^2 + (g(u^{\varepsilon}), u^{\varepsilon}) = \|u_t^{\varepsilon}\|^2 + (f, u^{\varepsilon}).$$
 Note that

Note that

$$(u_{\iota\iota}^{\varepsilon} - u_{xx}^{\varepsilon} + g(u^{\varepsilon}), u_{\iota}^{\varepsilon}) = \int_{0}^{T} \frac{d}{dt} \left[\int_{0}^{\pi} \left(\frac{1}{2} (|u_{\iota}^{\varepsilon}|^{2} + |u_{x}^{\varepsilon}|^{2}) + G(u^{\varepsilon}) \right) dx \right] dt$$

=0.

Hence multiplying the telegraph equation (7) by u_t^{ε} , we obtain $\varepsilon \| u_t^{\varepsilon} \|^2 = (f, u_t^{\varepsilon}) = -(f_t, u^{\varepsilon}) \leq \|f_t\| \| u^{\varepsilon} \|.$ (13)From (12) and (13), we find

(14)
$$(g(u^{\varepsilon}), u^{\varepsilon}) \leq \frac{1}{\varepsilon} ||f_{\iota}|| ||u^{\varepsilon}|| + ||f||| ||u^{\varepsilon}||.$$

By the assumption (6), for any L>1 there exists a constant $C_L>0$ such that $g(s)s \ge Ls^2 - C_L$ for all s.

From (14) we get

$$\begin{split} L \| u^{\varepsilon} \|^{2} - C_{L} &\leq \frac{1}{\varepsilon} \| f_{t} \| \| u^{\varepsilon} \| + \| f \| \| u^{\varepsilon} \| \\ &\leq \frac{1}{2\varepsilon^{2}} \| f_{t} \|^{2} + \frac{1}{2} \| u^{\varepsilon} \|^{2} + \frac{1}{2} \| f \|^{2} + \frac{1}{2} \| u^{\varepsilon} \|^{2}. \end{split}$$

Hence

$$\|u^{\varepsilon}\| \leq (L-1)^{-1/2} \left(\frac{1}{2\varepsilon^{2}} \|f_{\varepsilon}\|^{2} + \frac{1}{2} \|f\|^{2} + C_{L}\right)^{1/2}.$$

By (13), we obtain

$$\begin{split} \|\varepsilon u_t^{\varepsilon}\|^2 &\leq \varepsilon \|f_t\| \|u^{\varepsilon}\| \\ &\leq (L\!-\!1)^{-1/2} \Big(\frac{1}{2} \|f_t\|^2 + \frac{\varepsilon^2}{2} \|f\|^2 + \varepsilon^2 C_L \Big)^{1/2} \|f_t\|. \end{split}$$

Passing to the limit, we get

$$\limsup_{\varepsilon \to 0} \|\varepsilon u_t^{\varepsilon}\|^2 \leq \frac{1}{2} (L\!-\!1)^{-1/2} \|f_t\|^2.$$

Since we can choose L>1 arbitrarily large, we obtain $\varepsilon u_t^{\varepsilon} \rightarrow 0$ strongly in I^2

$$\varepsilon u_t^{\varepsilon} \to 0$$
 strongly in L^{ε} as $\varepsilon \to 0$,

i.e.,

$$u_{tt}^{\varepsilon} - u_{xx}^{\varepsilon} + g(u^{\varepsilon}) = -\varepsilon u_{t}^{\varepsilon} + f \rightarrow f$$
 in L^{2} as $\varepsilon \rightarrow 0$

Thus any $f \in C^{\infty}$ belongs to the L²-closure of the range of the operator: $u \rightarrow u_{tt} - u_{xx} + g(u)$. Since C^{∞} is dence in L^2 , the proof is completed.

Remark. In the above argument, any property of $\sigma(\partial_t^2 - \partial_x^2)$, is not used. So we can get similar result for the equation :

(15)
$$u_{tt} - u_{xx} + g(u) = f(x, t), \qquad (x, t) \in D \times \mathbf{R},$$

(16)
$$u(x, t) = 0,$$
 $(x, t) \in \partial D \times \mathbf{R},$

(17)
$$u(x, t+T) = u(x, t), \qquad (x, t) \in D \times \mathbf{R},$$

where $D \subset \mathbb{R}^{N}$ (N ≥ 2) is a bounded domain with a smooth boundary ∂D .

No. 4]

Similarly to the proof of Theorem, we can prove almost solvability of (15)–(17) under assumptions (5), (6) and

(18) $|g(s)| \leq C(1+|s|^p) \quad \text{for all } s \in \mathbf{R},$

for some constants p < (N/N-2) $(p < \infty$ if N=2) and C > 0. Here the condition (18) ensures compactness of the operator : $u \rightarrow g(u)$; $X \rightarrow L^2$.

Acknowledgement. The author would like to thank Professor Haruo Sunouchi for his advice and hearty encouragement.

References

- H. Brézis: Periodic solutions of nonlinear vibrating strings and duality principles. Bull. Amer. Math. Soc. (N. S.), 8, 409-426 (1983).
- [2] N. Basile and M. Mininni: Multiple periodic solutions for a semilinear wave equation with nonmonotone nonlinearity. Nonlinear Analysis: T. M. A., 9, 837-848 (1985).
- [3] J. M. Coron: Periodic solutions of a nonlinear wave equation without assumption of monotonicity. Math. Ann., 262, 273-285 (1983).
- [4] I. Ekeland: Nonconvex minimization problems. Bull. Amer. Math. Soc. (N. S.), 1, 443-474 (1979).
- [5] A. Haraux: Dissipativity in the sense of Levinson for a class of second-order nonlinear evolution equations. Nonlinear Analysis: T. M. A., 6, 1207-1220 (1982).
- [6] H. Hofer: On the range of a wave operator with nonmonotone nonlinearity. Math. Nach., 106, 327-340 (1982).
- [7] P. H. Rabinowitz: Large amplitude time periodic solutions of a semilinear wave equation. Comm. Pure Appl. Math., **37**, 189–206 (1984).
- [8] K. Tanaka: Infinitely many periodic solutions for the equation: $u_{tt}-u_{xx}\pm|u|^{s-1}u$ =f(x, t). Proc. Japan Acad., 61A, 70-73 (1985) and Comm. in P. D. E., 10, 1317-1345 (1985).
- [9] —: Infinitely many periodic solutions for a superlinear forced wave equation.
 Proc. Japan Acad., 61A, 341-344 (1985); Nonlinear Analysis: T. M. A. (to appear).
- [10] ——: On the range of wave operators. Tokyo J. Math., 8, 377-387 (1985).
- [11] M. Willem: Density of the range of potential operators. Proc. Amer. Math. Soc., 83, 341-344 (1981).
- [12] —: Variational methods and almost solvability of semilinear equations. Ordinary and Partial Differential Equations (W. N. Everitt and B. D. Sleeman ed.). Lect. Notes in Math., vol. 846, Springer-Verlag, Berlin, Heidelberg, New York (1981).