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On a Local Existence Theorem for Quasilinear
Hyperbolic Mixed Problems with Neumann

Type Boundary Conditions

By Gen NAKAMURA*) and Yoshihiro SHIBATA**)

(Communicated by KSsaku YOSIDA, M. J.A., April 14, 1986)

1. Introduction. Let S be a C and compact hypersurface in R
and/2 be the interior or exterior domain of S. We shall consider the local
existence in time o classical solutions for the following Neumann problem

---f(t, x) in [0, T] /2,(N.P)
Q(_) ==.=1 v(x)A,(t, x, .D_)-F,(t, x, _)---g(t, x) on [0, T]S,
u,(O, x)--u(x), (8u)(0, x)--u(x) in/2

or a----l, ..., m. Here, _u--(l, ..-, u), D_--(8u, i--1, ..., n, a=l, ...,
m, u; i---1, ..., m), Dl_--(Stzt, a-l, ..., m, D_), 8t--8/St, 8.-- 8/8x and
,(x) (,(x), ..., ,(x)) is the outer unit normal of S at x e S. We also try
to. obtain a sharp energy estimate of the regularity of solution in terms of
the data and the operators P, Q.

Our result has applications to the classical nonlinear wave equation
with Neumann or third kind boundary condition and the equation of mo-
tion describing the small deformation of a homogeneous, isotropic, hyper-
elastic material under action of gravity and surface force of dead load type.

Although there are many works for the Cauchy problem and the
Dirichlet problem (see [1] [6]), it seems that the lack of the good estimate
for the linearized Neumann problem such as for the Cauchy problem or
the Dirichlet problem has kept away from proving the local existence theo-
rem ior the Neumann problem. The deficiency of the estimate is the
derivative loss which breaks down the usual iteration process. Here, in
order to. avoid any misunderstanding, we add a comment. Namely, if a
rough estimate or the regularity of the solution is enough and if we re-
strict to the case m----1, a global existence theorem is proved in [7] by using
the Nash-Moser technique.

The idea of the proof is to introduce the new unknown 8t and replace
(N.P) by the Neumann problem for some equivalent hyperbolic-elliptic sys-
tem with respect to the unknowns (y, 8_u). Then we can get an estimate
which is good enough to carry out the usual iteration prccess for the new
Neumann problem.

2. Result and examples. Before stating our main result, we list
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our notations. For any multi-indices =(a,, ..., 0n) ---(1, ", m), a
unction f, a vector valued unction g=(g,..., g) and L e Z+ (Z+ being

the set o all non-negative integers), we put

Df=(33f ]+[a L), Df=(O{3f
Df= 3( f; [I=L) Df (3f;

Dg),g=g g, D2g (D2g, ...,
and so on. L and denote the usual L unction space defined in 9 and
its norm, respectively. For any L e Z+ we put

H={u(or y) e L; I]u]] (or ]y][)=]]D2u] (or []Dy[])<}
and B(w) (w being an open set) denotes the set

In particular we put u[]=sup]u(x)].

For any l e R, put ((u}} [ ](1-- A)/u ]dS, ((U>}o= ((u}> where A
d

is the Laplace-Beltrami operator on S. Then H(S) is defined by H(S)

For T0, L e Z+ and a Banach space E, C([0, T] E) denotes the set
of all E-valued unctions having all the derivatives of order L continuous
on [0, T]. Furthermore, put

E’ :0 C([0, T]; H+-) E,o E,
S, H+-==o C([0, T] (S)), [u],,r =sup0tr ]]DDu(t, .),
(U}L,,T=SUPogtgT DL(t, ")>, ]]L,O,T=[[L,T

We also use the same notation or the vector .
For positive integers s, i, a unctio.n H=H(t, x, ) (g=(Z, ..., )),

vectors u=(u,_ ..., u), =(v, .., v), we put
, =V)(dH)(t, x, )(v ..., v) (H/@. @)(t, x, +

or =0. Moreover, put

’=(u, i= 1, ., n, a 1, ., m, U.a a 1, ., m)
U= (u0, a= 1, ..., m U’), = (u, ..., u),
u,=3u/3x, Uo, =3u./3t

and let A(t, x, ’), (t, x, ), (t, x, ) be real valued C unctions defined
on ]’3Uo, ]]3Uo, ]]3Uo, t e [0, T0], x e 9 or fixed positive constants
T0, Uo. Then, put

= ++[=sup[3[3dA(t, x,
+sup]33d (t, x, U)[+sup]3[3d(t, x, )]]

Ao=3A/3u,
where sups, sups, sup are taken over the sets

E=[0, T0] {]’]3U0}, E=[0, To] (][g3Uo},
E= [0, To].e {lu[3Uo}

respectively.
Now we assume the ollowing assumptions (A-l) (A-3).

(A-l) A(t, x, 0)=(t, x, 0)=(t, x, 0)=0 (i=1, ..., n; a=l, ..., m).
(A-2) A(t, x, ’)=A(t, x, ’) on E(a, b=l, ..., m; i, ]=1, ..., n).



No. 4] Quasilinear Hyperbolic Mixed Problems 119

(A-3) There exist positive constants 8, d such that, for any t e [0, To],
_v e H(/2) and U’ e L(9) satisfying

Einj=l Eab=l l" A(t, x, U’(x))3v(x):()dx3 -d
J

Theorem. Under the above assumptions (A-1)(A-3), let L[n/2]+8
be an integer and o e H(9), e H-(9), f e E-, g e S-’,/ be the data of
the Neumann problem (N.P) which satisfy D]+ Uo and the L-- 2-th
order compatibility condition (defined in Remark after this theorem).
Then, if ]]]]/+s+]]]n++]n/]+V,o+}/e]+,/,ToB and taking D ap-
propriately, there exists T(OTTo) depending only on n, m, 9, To, ,
d and B such that the Neumann problem (N.P)admits a unique solution
e E satisfying the condition ]D’(t, .)[[3U0 (OtT). Here,

denotes the largest integer r with the property rs.
Remark. Suppose a solution y e E o (N.P) exist. Then, by differ-

entiating the equation with respect to the variable t several times, we can
a priori determine =(0, x) rom the initial data 0, . Now, differ-
entiate the boundary condition by the variable t p times and let t=0, then
we obtain a condition or (x) (x e S, Okp). For further reference, let
us name this condition the p-th condition. Then the L--2-th order com-
patibility condition is the condition which requires (x) (x e S, 0kL--2)
to satisfy the k-th condition or each k (0kL--2).

Finally we give two examples to which we can apply our theorem.
xample 1 (of. [8]). Put A(D)=u(I+]Vu)-/, gu=(u,..., nU)

and consider the Neumann problem (N.P)
in [0, T]9,

(N.P) Q(u)=,(3u(l+]gul)-/)+(u)=g on [0, T]S,
u(O, x)=u(x), (3u)(0, x)=u’(x) in 9.

This is the well known classical nonlinear wave equation with Neumann
(--0) or the third kind boundary condition ((0)=0 and T0).

xample 2. I the undeformed state 9 of a three dimensional, homo-
geneous, isotropic, hyperelastic material has not any stress in it, the equa-
tion o motion describing its small displacement (t, x) under the action of
the body orce (t, x, x +g(t, x)) and surface force p(t, x) of dead load type
is described by the previous Neumann problem (N.P) provided that m=n
=3, and A, , T, f, g are defined as ollo.ws. Let 2, Z be the Lam
constants o this material and ()=(z),=2 (trace )[+2g+o()
(as 0) be its second Piola-Kirchhoff stress tensor, where is the strain
tensor and is the identity matrix. Then, if p(x) (0) is the density of
the material,

A(gu) p l(a+
(t, x, y)=--(b(t, x, x+(t, x))--b(t, x, x)),
(t, x, )=0, f(t, x)=b(t, x, x), g(t, x):p-p(t, x)

or a= 1, 2, 3.
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Under these circumstances, the assumption (A-l) is obvious and the
assumption (A-2) follows rom the hyperelasticity. By mechanical experi-
ments, we know a priori the properties"

/>0, 3+2/0
or the small deformation of the material. Together with this properties
and the amous Korn’s inequality, the assumption (A-3)holds if ll7_ull is
sufficiently small.
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