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Oo The Grothendieck conjecture [1], [2] predicts the global algebraic
behavior of solutions of linear differential equations, provided that these
equations have "sufficiently many solutions" after reduction (mod p) for
almost all p. In-depth studies of this conjecture and its interesting gener-
alizations belong to Katz [1], [3]. However, the conjecture remains open
in many important cases. One of the crucial cases, pointed out in [l], [4],
is the case of Lam-type equations or the case of rank one equations over
an elliptic curve. In this case, we show how the methods of Pad approxi-
mations can be used to prove the Grothendieck conjecture in this and other
important cases.

1o For expositions of the p-adic properties of linear differential
equations connected with the Grothendieck conjecture see [1], [2], [3], [4].
If a linear differential equation is represented in a matrix form
( 1 ) (d/dx)f+A(x)f-- O,
with AA(x)e M(n, K(x)) and an algebraic number field K, then the p-
curvature operator of (1) mod p is -((d/dx).I+A)(mod p).

Here is, in fact, a linear operator" -A (mod p), where A--A,
A+--(d/dx)Aq-AA.

The Grothendieck conjecture. For a system (1), =0 for almost all
Io if and only if all solutions of (1) are algebraic functions. Detailed studies
o17 equivalents of the Grothendieck conjecture are presented in Honda [2]
for scalar linear differential equations

clef (n)(2) Lf--af + +af’q-aof=O
and a=a(x) e K[x] (O_i_n). Let, for a prime ideal p of K, K, denotes
the residue field and L, denotes the reduction rood p of L. Other reformu-
lations of the Grothendieck conjecture are the following"

1) If for almost all prime ideals p, Lpf=O has n solutions in K,(x)
which are independent over p(xP), then all solutions of (2) are algebraic
functions

2) If for almost all p we have (d/dx)--0 mod K,((x))[d/dx]Lp, then
all solutions of (2) are algebraic functions.

A condition weaker than assumptions of the Grothendieck conjecture
is the condition o global nilpotence of (1), i.e., the condition of nilpotence
of matrices for almost all p [1], [2].
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2. We assume below that f(x) satisfies a local version of the as-
sumptions of the Grothendieck conjecture. Namely, for an algebraic
number field K and some e K we assume that all functions f(x) have
Taylor expansions f(x)==o a,(x-) with a,, e K (n--O, 1, i=O,
1,..., m--l) and we assume that for some c0_l (depending only on f(x)
and ),
( 3 ) ]a,---l_c" i--O, 1, ..., den {ao,,..., a,," i--O, 1, ...}_c" n_no(m).
Here Il is a size of an algebraic number a eK, i.e. I]--max
a--l,..., d} where a()are all numbers algebraically conjugate to a; and
den (a0, ",a} denotes the common denominator of algebraic numbers
a0, "", an. We need an auxiliary

Lemma 1. Let M, N be integers NMO and let u (liM,
_N) be algebraic integers in K with sizes at most U(_I). Then there
exist algebraic integers x, xu in K, not all O, satisfying Ej=iN Uij. xj:O
(I_i_M) and ]l_c(cNU)/(-) (I_]_M). Here c=c(K)>O.

The existence of Pad approximations to 1, f(x), ..., f-(x) at x=
is given by

Lemma 2. Let 1>0 and D be a sufficiently large integer, D_Do(f,
m,,D.

Under the assumptions above, there exist polynomials Po(x),...,
P_(x) K[x] not all zero of degree at most D with integer coefficients of

c c(f, K, , )0 and such that the functionsizes bounded by c-
R(x): E__-o P(x)f(x)

has a zero at x= of order at least mD-[mD].
DProof. Let P(x)=,=op, (x--)n, where Pn, are undetermined

integers from K (i=0, ., m-1 n=0, ., D). Then, in the notation
Xabove, R(x)=,__0 .{]1,;0,_<p,a_,}. Then the system of linear

equations on Pn,, equivalent to the condition ordx;: R(x)_MmD--[mD],
has the form"
(4) E F,Z-_o,_p,’an-,=O" n=0,1,...,M-1.

This is a system of M equations in m(D+I)M unknowns p,
(i=0,...,m-1;n=0,...,D) with coefficients of sizes at most c0 and a
common denominator bounded by c (according to (3)). Applying Lemma
1, we obtain a nontrivial solution o (4)in integers p, from K of sizes
bounded by c(+)/ where c=c(co, K)O. Then the corresponding poly-
nomials P(x) (i=0,..., m-l) satisfy all the conditions of Lemma 2.

Let us assume for now that R(x)O. According to the expansion
R(x) in proof of Lemma 2 we have R(x)--Cr(X--)r-O((x--)r+), where cg:0
is an algebraic number rom K of size at most c. c, with the denominator
bounded by c, c=c(Co)O.

Lemma ). Let us assume that there is a pair of meromorphic func-
tions g(u), h(u) of order of growth _p, such that x=g(u), f(x)= h(u) in the
neighborhood of x=, such that g-(5):/:oo. Then, for sulciently large
D_D.(f, m,, ), and c=c(f, )0, ICrlc’m-(r/).
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Pro.of. Let g(u)-- g(u)/a(u), h(u)-- h(u)/a(u), where g(u), h(u), a(u)
are entire functions it C of order of growth _p, such that x--g(u),f(x)
=h(u) near x=, =g(Uo) and a(Uo)=/=O, g’(Uo)=/=O. We put

def
F(u) a(u)/ lR(g(u)) __-o a(u)- l- hl(u) P((gl(u) /a(u))a(u)),

so that F(u) is an entire function with the following upper bound on a
circle Cr" lU--Uol=TO" IFIr_mD.c.exp {o(D+m+l)Tp} for
h, a) >0.

We can apply now Cauchy theorem to an entire function F(u)"

( 5 ) r(r(u) 1 c F()d <mD c" exp (A(D+m+ 1). Tp}T
r! 2i (--o)-+1_

Here R()(x)l__:=c.r!:O and R()()=0 for all O_n_r. Thus
F(r)(u) [u=uo__ (T(Uo)D+ 1. R(r)(g(u)) lu=uo" g’(o)

and hence,
( 6 ) cr- (F()(Uo) /r !). a(Uo) -(D/’/ 1). g’(Uo)- r.

Let us put T=(r/D)TM in (5). Then we get from (5)-(6) Icl<c’.c2
c;.(r/D)-(/), where c6=c6(Uo)>0, c7=c7(g, h, Uo)>O and D_D(m). Ac-

cording to Lemma 2, r_mD--[mD]. Thus ICrl__c.m-(r/) with c--c(f,
>0.

As we remarked above, c is an algebraic number from K of size at
most c and the denominator at most c, c,=cs(f, , )

Since c=/=0, the Norm-product-den (c) c(j is a nonzero rational
integer, where c(j are numbers algebraically conjugate to c. Hence
den (c). ]-[ C(r") ]__ 1, and using the bound of Lemma 3, we obtain

c(") I>1 or c;. Cgs’r>m(r/),C m-(r/) ]den (c). l-I
where d=[K’G]. The last inequality is clearly impossible, whenever m
is sufficiently large" m_mo(f,K, ,). Hence, if f(x) is a solution of a
linear differential equation satisfying assumptions of the Grothendieck
conjecture, and f(x)has an algebraic Taylor expansion in the neighbor-
hood of an algebraic point x=, where x and f(x) can be uniformized by
meromorphic functions, then f(x) is an algebraic function, cf [5].

:. Following Dwork’s discussion in ([4], 6) we determine now all
cases of global nilpotence of Lam equations. Simultaneously we prove
the Grothendieck conjecture for this class of equations. The Lam equa-
tion has the form
( 7 P(x)(df/dx)+(1/2)P’(x)(df/dx)-{n(n+l)x+B}f=O,
where P(x)=4x--gx-g=4(x-e)(x-e)(x-e)e G[x], n is a nonnegative
integer and B e . According to ([6], 23.7), Lam equation always has
two solutions f/ and f_ such that f/ .f_=Q(x, B), where Q(x, B) is a poly-
nomial from G[x, B] of degree n. According to [4], [6] there are two pos-
sibilities" (i)when f//f_ is a constant and, (ii)when f/, f_ are linearly
independent over C. In case (i), B is equal to one of 2n+1 characteristic
values B (1_m_2n+1) of Lam equation [6] (called in physics ends of
lacunae of the spectrum of Lam equation in the transcendental form, see
below). Each of the numbers By is an algebraic number and one of the
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solutions of (7) with B=B is an algebraic function, while there is a non-
algebraic solution as well" m-l,...,2n/l. Hence in the case (i), the
equation (7)is globally nilpotent (cf. [4], 6.7.1). In the case (ii) as it is
shown in ([4], 6.7.2) the global nilpotence of the Lam equation (7) implies
that p-curvature is zero, =0, for almost all p.

We use now the transcendental form of Iamd equation (7) and useful
remarks from our paper [7]. Let p(u) be the Weierstrass elliptic function
corresponding to P(x)" p’(u)= P(p(u)). Then, under the change of variables,
x=(u)"
( 8 (df/du) {n(n+ 1)(u) +B}f.

The two solutions f/, f_ mentioned above have the form
f= {[-[\ (a(a+_u)/a(u)a(a3)}.exp {-u E--- (a)},

with the following system of equations on a"
(2n-1) ,L- p(a3=B, __, (p’(a3+p’(a))/(p(a3--p(a))=O

for all i=1, ..., n. Here a(u) is a Weierstrass’ a-function,
p(u) (d /du2) log a(u),

and a(u) is an entire function o order of growth 2. In particular, any
solution f-f(u) of (8) is a meromorphic function in u of order of growth 2.

Moreover, for B :/=B (1

_
m_2n/ 1), two linearly independent solutions

of (8) can be expressed in the following form" f==ob(d/duOG(u),
where G(u)--(a(u+a)/a(u)a(a))exp{p-5(a)u} and bo,...,bn_,,, p(a) are
determined algebraically in terms of B and g, g [7]. Hence in each o
the cases (i) or (ii), assuming the conditions of the Grothendieck con-
jecture that --0 for almost all p--we deduce as a corollary of Lemmas
2, 3 proved above, that all solutions of (7) are algebraic unctions.

Theorem 1. For an integer n_O the Lamg equation (7) never satisfies
the assumptions of the Grothendieck conjecture, i.e. g=0 for infinitely
many p. There are 2n+l (algebraic) values of B, namely B (l_m2n
+1), for which the equation (7) is globally nilpotent. For all other values
of B the equation (7) is not globally nilpotent.

All results o 2 can be generalized to the case of functions in n vari-
ables. This way we obtain a solution to the Grothendieck conjecture [1]
for rank one equations over arbitrary algebraic curves (with meromorphic
parametrizations given by ratios o 0-functions corresponding to these
curves).
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