21. On Tight t-designs in Compact Symmetric Spaces of Rank One

By Eiichi Bannait ${ }^{\dagger}$,*) and Stuart G. HogGar**)
(Communicated by Shokichi Iyanaga, m. J. A., March 12, 1985)

We announce the following result. For the definition of tight t designs, see $\S 1$.

Theorem 1. There exists an absolute constant t_{o} which satisfies the following: if X is a tight t-design in one of the complex projective spaces $P^{a}(C)(d=4,6,8, \cdots)$ or the quaternion projective spaces $P^{d}(\boldsymbol{H})(d=8,12$, $16, \cdots$) then we have $t \leq t_{0}$.

Since the corresponding results for the other compact rank 1 symmetric spaces are already obtained (see [1], [2], [5]), we have the following.

Corollary to Theorem 1. There exists another absolute constant t_{o} which satisfies the following: if X is a tight t-design in one of the connected compact rank 1 symmetric spaces of (topological) dimension $d \geq 2$, then we have $t \leq t_{o}$. (Here we need t_{o} to be at least 11 as there exists a tight 11-design in S^{23}.)

We expect that the actual value of t_{o} in Theorem 1 can be very small (i.e., something like 5 although it may not be exactly 5). The determination of the exact value of t_{o}, which is very involved, will be treated in a subsequent full paper which is now being prepared by us.
§1. Preliminaries. Let S be a connected compact symmetric space of rank 1. That is, S is one of the following spaces: sphere S^{d}, projective spaces $P^{d}(K)$ where K is one of the real field $R(d=2,3,4, \cdots)$, complex field $C(d=4,6,8, \cdots)$, quaternion field $H(d=8,12,16, \cdots)$ or the Cayley octanions $\boldsymbol{O}(d=16)$. Then $S=H \backslash G$ for a suitable pair of a compact Lie group G and its closed subgroup H. The space $L^{2}(S)$ is decomposed into the direct sum of irreducible G-spaces V_{i} (i.e. $L^{2}(S)=V_{0} \oplus V_{1} \oplus V_{2} \oplus \ldots$) where V_{i} gives the i-th "spherical" representation of G. The dimension of V_{i} is finite and is denoted by m_{i} (cf. § 2).

A finite non-empty subset X of S is called a t-design in S if $\sum_{x \in X} f(x)$ $=0$ for any function $f \in V_{1} \oplus V_{2} \oplus \cdots \oplus V_{t}$. Note that for each t and each S, the existence of t-designs X in S is guaranteed by Seymour-Zaslavsky [17]. The reader is referred to [5], [6], [14], [16], etc. for the examples and the fundamental properties of t-designs in S.

Let $d(x, y)$ be the distance function on S, and let δ be the diameter of S, i.e., $\delta=\operatorname{Max}_{x, y \in X} d(x, y)$. Let $A(X):=\{d(x, y) \mid x, y \in X, x \neq y\}$. If $|A(X)|$

[^0]$=s$, then we call X an s-distance subset in S. Let $e:=|A(X)| \delta \mid$, and let $\xi=s-e$. Then ξ is either 0 or 1 according as $\delta \notin A(X)$ or $\delta \in A(X)$.

The important properties of t-designs and s-distance subsets in S are summarized by the following two propositions. (The explicit values of the m_{i} and the m_{i}^{*} for $P^{d}(K)$ are listed in §2.)

Proposition 1.1. a) If X is a t-design in S, then $|X| \geq 1+m_{1}+\cdots$ $+m_{[t / 2]}$.
b) If X is an s-distance subset in S, then $|X| \leq 1+m_{1}+\cdots+m_{s}$.
c) If X is a t-design as well as an s-distance subset in S, then $t \leq 2 s$.
d) If X is a subset of S which satisfies both the specific condition and the equality in any one of the above three statements a), b) and c), then X also satisfies the specific condition and the equality in each of the other two of a), b) and c). If this happens, then t must be even with $t=2 s=2 e$. Such X is called a tight $2 e-d e s i g n ~ i n ~ S . ~$

Proposition 1.2. a) (Dunkl [7]). If X is a t-design in S, then $|X|$ $\geq 1+m_{1}^{*}+\cdots+m_{[(t-1) / 2]}^{*}$.
b) If X is an s-distance subset in S with $\delta \in A(X)$, then $|X| \leq 1+m_{1}^{*}+\cdots$ $+m_{e}^{*}$.
c) If X is a t-design as well as an s-distance subset in S with $\delta \in A(X)$, then $t \leq 2 s-1(=2 e+1)$.
d) If X is a subset of S which satisfies both the specific condition and the equality in any one of the above three conditions a), b) and c), then X also satisfies the specific condition and the equality in each of the other two of a), b) and c). If this happens, then t must be odd with $t=2 s-1=2 e+1$. Such X is called a tight $(2 e+1)$-design in S.

Most of the above results are proved by linear programming methods with the help of harmonic analysis on S, by imitaing the proof for $S=S^{d}$ in Delsarte-Goethals-Seidel [6]. See also, Hoggar [14], Neumaier [16] (and also Bannai-Ito [3] which is now being prepared).
$\S 2$. Lloyd type theorem for tight t-designs. Tight t-designs in S^{d} (with $d \geq 2$) do not exist for $t \geq 6, \neq 7, \neq 11$ (see [1], [2]), and the tight 11design is unique (with $d=23$) (see [4]). The study of tight t-designs in $P^{d}(\boldsymbol{R})$ is completely reduced to that of tight t-designs (with t odd) in S^{d} (see [5]), because, by looking at a point in $P^{a}(\boldsymbol{R})$ as two antipodal points in S^{d}, a tight $2 e$-design in $P^{d}(\boldsymbol{R})$ corresponds to a tight $(4 e+1)$-design in S^{d}, and a tight $(2 e+1)$-design in $P^{d}(\boldsymbol{R})$ corresponds to a tight ($4 e+3$)-design in S^{d}. Tight t-designs in $P^{16}(O)$ do not exist for $t \geq 6$ (see [15]). Thus, in what follows, we have only to consider $P^{d}(\boldsymbol{C})$ and $P^{d}(\boldsymbol{H})$.

Now, we list some of the important numbers and polynomials related to the harmonic analysis on $P^{d}(K)$. (Cf. [11], [14], [16]).

Let K be one of $\boldsymbol{R}, \boldsymbol{C}$ and \boldsymbol{H}, and let $m=(K: \boldsymbol{R}) / 2$. Let n be the dimension of the vector space naturally attached to the projective space. Then the topological dimension of $P^{d}(K)$ is given by $d=2 m(n-1)$. Let $N=m n$. We refer the reader to [14, p. 240] for the definitions and the expressions
of $Q_{k}^{\epsilon}(x)$ and $R_{k}^{\epsilon}(x)=Q_{\dot{0}}^{\xi}(x)+Q_{i}^{\xi}(x)+\cdots+Q_{k}^{\xi}(x)(\xi=0$ or 1$)$. It is important that $R_{k}^{\epsilon}(x)$ (as well as $Q_{k}^{\epsilon}(x)$) is represented by Jacobi polynomials J_{k} (cf. [18]). Indeed $R_{k}^{\epsilon}(x)=$ (constant). $J_{k}^{(\alpha, \beta+\xi)}(2 x-1)$ with (α, β) given by ($d / 2$, $-1 / 2)$ for R; $(d / 2,0)$ for C; and $(d / 2,1)$ for H. We also note that

$$
\begin{aligned}
& m_{k}=Q_{k}^{0}(1) \text { and } m_{k}^{*}=Q_{k}^{1}(1) \quad \text { with } \\
& Q_{k}^{\xi}(1)=(N)_{k+\xi-1} \cdot(N-m)_{k} \cdot(2 k+N+\xi-1) /(m)_{k+\xi} \cdot k!,
\end{aligned}
$$

where $(p)_{0}=1$ and $(p)_{a}=p(p+1) \cdots(p+a-1)(a \in N)$. Note that

$$
R_{k}^{\hat{\xi}}(1)=(N)_{k+\xi} \cdot(N-m+1)_{k} /(m)_{k+\xi} \cdot k!;
$$

these are the numbers

$$
1+m_{1}+\cdots+m_{k}(\text { for } \xi=0) \text { and } 1+m_{1}^{*}+\cdots+m_{k}^{*}(\text { for } \xi=1) .
$$

For later use, we also remark that

$$
R_{k}^{\xi}(x)=\frac{(N)_{2 k+\xi}}{(m)_{k+\xi} \cdot k!} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} \frac{i^{(k+m+\xi-1)}}{i^{(2 k+N+\xi-1)}} x^{k-i}
$$

where $_{0}(p)=1$ and $_{a}(p)=p(p-1) \cdots(p-a+1)(a \in N)$.
We get the following Lloyd type theorem (cf. [1]).
Proposition 2.1. If there exists a tight t-design in $P^{d}(K) d \geq 2$, with $t=2 e(r e s p . t=2 e+1)$, then all the zeros of $R_{e}^{0}(x)\left(r e s p . R_{e}^{1}(x)\right)$ are the reciprocals of integers. Thus, if we put $f(x):=S_{e}^{\epsilon}(x):=x^{e} R_{e}^{\epsilon}(1 / x)$, then all the zeros of $f(x)$ must be integers.
§3. A number-theoretical result of Erdös, and its generalization. Erdös ([8], [10]) proved the following result which is a generalization of Sylvester-Schur's classical theorem :
(Erdös) If $(n+1)(n+2) \cdots(n+k)$ is a product of k consecutive integers with $n>k$ and $k \geq 3$, then it is divisible by a prime $\geq k$ with odd exponent.

The basic idea of his proof is briefly explained as follows. Suppose the result false. Let $n+i=a_{i} x_{i}^{2}$ with a_{i} square-free. Then, by using Sylvester-Schur, the a_{i} 's are all distinct and all the prime factors of a_{i} are $<k$. Thus an upper bound of $\prod a_{i}$ is obtained, i.e., $\prod_{i=1}^{k} a_{i} \mid(k-1)!2^{\alpha} 3^{\beta}$ $\prod_{5 \leq p<k} p$ for suitable α and β. On the other hand, Πa_{i} is no less than the product of the first k square-free integers, which is $\geq(3 / 2)^{k}(k-1)$! (if $k \geq 71$, say). This leads to a contradiction to the upper bound. (The case $k<71$ is dealt with separately.)

We get the following generalization of this result of Erdös.
Theorem 3.1. Let α be a positive integer. Then there exists a certain function $k_{0}(\alpha)$ of α which satisfies the following: if $(n+2)(n+4) \ldots$ $(n+2 k)$ is a product of k consecutive odd integers with $n>2 k$, then it is divisible by a prime $\geq 2 k+\alpha$ with odd exponent, if $k>k_{0}(\alpha)$.

Theorem 3.1 is proved by methods similar to those of Erdös, but very involved. Let $n+2_{i}=a_{i} x_{i}^{2}$ with a_{i} square-free. We cannot expect a very fancy upperbound of Πa_{i}. Yet the lower bound is considerably improved, i.e., $\prod_{i=1}^{k} a_{i} \geq c^{k} \cdot(2 k-1)$!! for a given c if k is sufficiently (extremely) large. This is obtained by using the following lemma to show that not many a_{i} 's are divisible by a certain prime.

Lemma 3.2. Let a, b, N and C be any given positive integers. Then
the number of solutions (x, y) in positive integers of the equation

$$
a x^{2}-b y^{2}= \pm N \quad \text { with } \quad z<x<C z
$$

is bounded by a certain function $f(a, b, N, C)$ which is independent of z.
Lemma 3.2 is proved by using the standard results in Pell equations and related quadratic equations. (It would be very nice if we could find $k_{0}(\alpha)$ in Theorem 3.1 explicitly for $\alpha=1,2,3$, say. An explicit upperbound for $f(a, b, N, C)$ will help to find an explicit value of $k_{0}(\alpha)$ in Theorem 3.1.)
§4. Proof of Theorem 1 (Sketch). By Proposition 2.1, we have only to show that the polynomial $f(x)=S_{e}^{\epsilon}(x)$ does not have all integral zeros if e is not too small. On assuming the roots are integers, there are two main techniques we can use to obtain a contradiction. First, the discriminant of $f(x)$ is the square of an integer. Second, all the sides of the Newton polygon corresponding to $f(x)$ (and for any prime p) must have integral slopes (cf. [2]). We divide our proof of Theorem 1 into the following four cases.

	C	H
$t=2 e$	Case 3	Case 1
$t=2 e+1$	Case 2	Case 4

Case 1 and Case 2. The discriminant of the classical orthogonal polynomials (including Jacobi polynomials) are calculated by Hilbert [13] (see also [18]). Using the representation of $R_{e}^{\epsilon}(x)$ as Jacobi polynomials, we get the following diophantine equations. First, let us consider Case 1 with $e=2 q$ (even). Then we get

$$
\begin{equation*}
(2 q+1) \underbrace{X(X+1) \cdots(X+(2 q-1))}_{2 q \text { factors }}=Y^{2} \tag{4.1}
\end{equation*}
$$

for $X=1+(d / 4)$ (which is an integer) and an integer Y. For Case 1 with $e=2 q+1$ (odd), we have

$$
\begin{equation*}
(\underbrace{(X-q) \cdots(X-1)}_{q \text { factors }}(\underbrace{X+1) \cdots(X+q)}_{q \text { factors }}=Y^{2} \tag{4.2}
\end{equation*}
$$

with $X=q+1+(d / 4)$ (which is an integer) and an integer Y. By slightly modifying the argument of Erdös (see [9], [10], and §3), we can easily get a contradiction if e is not too small. Case 2 is finished similarly. (We can in fact find a very small t_{o} for Theorem 1.)

Case 3 and Case 4. These cases are more involved than the previous cases, as the diophantine equations which come from the discriminant of $f(x)$ are not very nice, although we expect that this condition alone should be enough to prove Theorem 1. For example, for Case 3 with $e=2 q$ (even), we have

$$
\begin{align*}
& \underbrace{1 \cdot 2 \cdots(2 q)}_{2 q \text { factors }}(\underbrace{X+2)(X+4) \cdots(X+2 q}_{q \text { factors }}) \tag{4.3}\\
& \quad \times \underbrace{(X+2 q+1)(X+2 q+3) \cdots(X+2 q+(2 q-1))}_{q \text { factors }}=Z^{2}
\end{align*}
$$

with $X=(d / 2)$ (which is an integer) and an integer Z. Thus, we use another technique. Again, let us consider the Case 3 with $e=2 q$. Since $f(x)=$ (constant) $\sum_{i=0}^{e} a_{i} x^{i}$ with

$$
a_{i}=\binom{e}{i}(Y-i) \cdots(Y-2 q+2)(Y-2 q+1) /(e-i)!
$$

with $Y=4 q+(d / 2)$ (an integer), we get the following result by using the Newton polygon method: let p be a prime $>e$. If $p \mid(Y-i)$, then p divides $Y-i$ with exponent a multiple of $i+1$. In particular, any prime divisor $p(>e)$ of $(Y-1)(Y-3) \cdots(Y-2 q+1)$ must divide the product with even exponent. This condition is actually enough to finish the proof of Theorem 1 by using Theorem 3.1 together with a slight modification of the result of Erdös mentioned at the beginning of $\S 3$, but the value of t_{0} (in Theorem 1) obtained by this proof is extremely large. The following alternative proof of Theorem 1 gives a very small t_{0}. Again we consider Case 3 with $e=2 q$. The important fact here is that the factor $(Y-1)(Y-3) \cdots(Y-2 q+1)$ is exactly the factor $(x+2 q+1) \cdots(x+2 q+(2 q-1))$ in (4.3). This fact is very useful when applying the method of Erdös [8, 9, 10] to show that (4.3) has no integral solutions (if any prime $p>e$ which divides $(X+2 q+1) \ldots$ ($X+2 q+(2 q-1))$ divides it with even exponent). In fact, by putting $x+1$ $=a_{i} x_{i}^{2}$ with a_{i} square-free in (4.3), we evaluate Πa_{i} from above and below, and get a contradiction if t is not too small. The other cases: Case 3 with $e=2 q+1$ and Case 4 are dealt with similarly. (We can in fact find a very small t_{o} for Theorem 1.)

References

[1] E. Bannai and R. M. Damerell: J. Math. Soc. Japan, 31, 199-207 (1979).
[2] -: J. London Math. Soc., 21, 13-30 (1980).
[3] E. Bannai and T. Ito: Algebraic Combinatories II (in preparation).
[4] E. Bannai and N. J. A. Sloane: Can. J. Math., 33, 437-449 (1981).
[5] P. Delsarte, J. M. Goethals and J. J. Seidel: Philips. Res. Reports., 30, 91-105 (1975).
[6] -: Geom. Dedicata, 6, 363-388 (1977).
[7] C. F. Dunkl: Mich. Math. J., 26, 81-102 (1979).
[8] P. Erdös: J. London Math. Soc., 14, 245-249 (1939).
[9] -: ibid., 26, 176-178 (1951).
[10] P. Erdös and J. L. Selfridge: Illinois J. of Math., 19, 292-301 (1975).
[11] R. Gangolli: Ann. Inst. Henri Poincaré, 3, 121-225 (1967).
[12] S. Helgason: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, N.Y. (1978).
[13] D. Hilbert: J. für reine und ang. Math., 103, 337-345 (1888).
[14] S. Hoggar: Europ. J. Comb., 3, 233-254 (1982).
[15] -: Tight t-designs and octanions, Coxeter Festschrift, Teil III, University of Giessen, pp. 1-16 (1984).
[16] A. Neumaier: Combinatorial configurations in terms of distances. Memorandum 81-07, Eindhoven Univ. of Technology (1981).
[17] P. Seymour and T. Zaslavsky: Averaging sets: Advs. in Math., 52, 213-240 (1984).
[18] G. Szegö: Amer. Math. Soc. Colloq. Publ., 23, Providence R. I. (1939) (4th edition 1975).

[^0]: †) Supported in part by NSF grant MCS-83082 and by British SERC grant.
 *) The Ohio State University; Queen Mary College, University of London.
 **) University of Glasgow.

