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On Tight t.designs in Compact Symmetric
Spaces of Rank One

By Eiichi BANNAI*’* and Stuart G. HOGGAR**)

(Communicated by Shokichi IYANAG., M. Z..., March 12, 1985)

We announce the ollowing result. For the definition of tight t-
designs, see 1.

Theorem 1. There exists an absolute constant to which satisfies the
following" if X is a tight t-design in one of the complex projective spaces
P(C) (d=4, 6, 8,...) or the quaternion projective spaces P(H) (d=8, 12,
16,...) then we have t_to.

Since the corresponding results for the other compact rank 1 sym-
metric spaces are already obtained (see [1], [2], [5]), we have the following.

Corollary to Theorem 1. There exists another absolute constant to
which satisfies the following" if X is a tight t-design in one of the connected
compact ranlc 1 symmetric spaces of (topological) dimension d2, then we
have t to. (Here we need to to be at least 11 as there exists a tight ll-design
in S.)

We expect that the actual value of to in Theorem 1 can be very small
(i.e., something like 5 although it may not be exactly 5). The determina-
tion of the exact value o to, which is very involved, will be treated in a
subsequent ull paper which is now being prepared by us.

1o Preliminaries. Let S be a connected compact symmetric space
of rank 1. That is, S is one of the following spaces" sphere S, projective
spaces P(K) where K is one of the real field R (d=2,3, 4,...), complex
field C (d=4, 6, 8, ...), quaternion field H (d--8, 12, 16, ...) or the Cayley
octanions O (d=16). Then S=H\G or a suitable pair of a compact Lie
group G and its closed subgroup H. The space L(S)is decomposed into
the direct sum of irreducible G-spaces V (i.e. L(S)=VoqVq)V.(R) .)
where V gives the i-th "spherical" representation of G. The dimension
of V is finite and is denoted by m (cf. 2).

A finite non-empty subset X of S is called a t-design in S ifxf(x)
=0 or any unction f e VV(R)...qVt. Note that or each t and each
S, the existence of t-designs X in S is guaranteed by Seymour-Zaslavsky
[17]. The reader is referred to [5], [6], [14], [16], etc. or the examples
and the undamental properties of t-designs in S.

Let d(x, y) be the distance unction on S, and let be the diameter of
S, i.e., =Max,x d(x, y). Let A(X) "= (d(x, y) x, y e X, x =/=y}. I IA(X)
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--s, then we call X an s-distance subset in S. Let e’--IA(X)\5[, and let
=s-e. Then is either 0 or 1 according as 5 e A(X) or 5 e A(X).

The important properties of t-designs and s-distance subsets in S are
summarized by the ollowing two propositions. (The explicit values of the
m and the m* or P(K) are listed in 2.)

Proposition 1.1. a) If X is a t-design in S, then X[l%m%...

b) If X is an s-distance subset in S, then
c) If X is a t-design as well as an s-distance subset in S, then t2s.
d) If X is a subset of S which satisfies both the specific condition and the
equality in any one of the above three statements a), b)and c), then X also
satisfies the specific condition and the equality in each of the other two of
a), b) and c). If this happens, then t must be even with t=2s=2e. Such
X is called a tight 2e-design in S.

Proposition 1.2. a) (Dunkl [7]). If X is a t-design in S, then XI,1+m+. +m<_.
b) If X is an s-distance subset in S with e A(X), then [X[l+m+...

c) If X is a t-design as well as an s-distance subset in S with e A(X),
then t2s--1 (=2e+l).
d) If X is a subset of S which satisfies both the specific condition and the
equality in any one of the above three conditions a), b) and c), then X also
satisfies the specific condition and the equality in each of the other two of
a), b)and c). If this happens, then t must be odd with t=2s-l=2e+l.
Such X is called a tight (2e+ 1)-design in S.

Most o the above results are proved by linear programming methods
with the help of harmonic analysis on S, by imitaing the proof for S=S
in Delsarte-Goethals-Seidel [6]. See also, Hoggar [14], Neumaier [16] (and
also Bannai-Ito [3] which is now being prepared).

2. Lloyd type theorem for tight t.designs. Tight t-designs in S
(with d2) do not exist for t6, 7, 11 (see [1], [2]), and the tight ll-
design is unique (with d=23) (see [4]). The study of tight t-designs in
P(R) is completely reduced to that of tight t-designs (with odd) in S (see
[5]), because, by looking at a point in P(R) as two antipodal points in S,
a tight 2e-design in P(R) corresponds to a tight (4e+ 1)-design in S, and
a tight (2e+ 1)-design in P(R) corresponds to a tight (4e+3)-design in S.
Tight t-designs in P(O) do not exist for t6 (see [15]). Thus, in what
ollows, we have only to consider P(C) and P(H).

Now, we list some of the important numbers and polynomials related
to the harmonic analysis on P(K). (Cf. [11], [14], [16]).

Let K be one of R, C and H, and let m=(K" R)/2. Let n be the dimen-
sion of the vector space naturally attached to the projective space. Then
the topological dimension of P(K) is given by d=2m(n--1). Let N=mn.
We refer the reader to [14, p. 240] or the definitions and the expressions



80 E. BANNAI and S. G. HOGGAR [Vol. 61 (A),

of Q(x) and R(x)-Qo(x)+Q(x)+... +Q(x) (-0 or 1). It is important
that R(x) (as well as Q(x)) is represented by Jacobi polynomials J (cf.
[18]). Indeed R(x)=(constant). J(,/)(2x-1) with (r, ) given by (d/2,
--1/2) for R; (d/2, 0) for C; and (d/2, 1) for H. We also note that

m--- Q(1) and m*-- Q(1) with
Q(1) (N)

_. (N-m). (2k+N+ 1) / (m) . k !,
where (p)0=l and (p)=p(p+l)...(p+a-1) (a e N). Note that

R(1)=(N)/.(N--m+l)/(m)/.k
these are the numbers

l+m+... +m (for =0) and l+m*+... +m* (for =1).
For later use, we also remark that

R(x)= (N)/ , (_l)(k)i(m)/. k :0 i -=)
x-’

where 0(p)=l and (p)--p(p--1)...(p--a+l) (a e N).
We get the following Lloyd type theorem (cf. [1]).
Proposition 2.1. If there exists a tight t-design in P(K) d_2, with

t--2e (resp. t=2e+ 1), then all the zeros of R(x) (resp. R(x)) are the recip-
rocals of integers. Thus, if we put f(x)’=S(x)’=xR(1/x), then all the
zeros of f(x) must be integers.

3. A number.theoretical result of ErdSs, and its generalization.
ErdSs ([8], [10]) proved the following result which is a generalization of
Sylvester-Sehur’s classical theorem,"

(ErdSs) If (n+ 1)(n+ 2). (n+ k) is a product of k eonsecutive integers
with n/0 and k_3, then it is divisible by a prime

_
k with odd exponent.

The basle idea of his proof is briefly explained as follows. Suppose
the result false. Let n+i=a,x with a square-free. Then, by using
Sylvester-Sehur, the a’s are all distinet and all the prime factors of a are
k. Thus an upper bound of 1-[ a is obtained, i.e., VI

__
a I(k-1) 2"3

,<p for suitable a and/. On the other hand, I-[ a is no less than the
product of the first k square-free integers, which is

_
(3 / 2) (k --1) (if k_71,

say). This leads to a contradiction to the upper bound. (The case k71
is dealt with separately.)

We get the following generalization of this result of ErdSs.
Theorem 3.1. Let be a positive integer. Then there exists a

certain function ko(a) of which satisfies the following" if (n+2)(n+4).
(nq-2k) is a product of k co.nsecutive odd integers with n2k, then it is
divisible by a prime _2k+a with odd exponent, if kko(r).

Theorem 3.1 is proved by methods similar to those of ErdSs, but very
involved. Let n+2--ax with a square-free. We cannot expect a very
fancy upperbound of I-[ a. Yet the lower bound is considerably improved,
i.e. V[ c

__ a_ (2k-1) for a given c if k is sufficiently (extremely) large.
This is obtained by using the following lemma to show that not many a’s
are divisible by a certain prime.

Lemma 3.2. Let a, b, N and C be any given positive integers. Then
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the number of solutions (x, y) in positive integers of the equation
ax-by-- +_N with z x Cz

is bounded by a certain function f(a, b, N, C) which is independent of z.
Lemma 3.2 is proved by using the standard results in Pell equations

and related quadratic equations. (It would be very nice if we could find
k0(a) in Theorem 3.1 explicitly for a----1, 2, 3, say. An explicit upperbound
for f(a, b, N, C) will help to find an explicit value of k0(a) in Theorem 3.1.)

4. Proof of Theorem 1 (Sketch). By Proposition 2.1, we have only
to show that the polynomial f(x)=S(x) does not have all integral zeros if
e is not too small. On assuming the roots are integers, there are two main
techniques we can use to obtain a contradiction. First, the discriminant
of f(x)is the square of an integer. Second, all the sides of the Newton
polygon corresponding to f(x) (and for any prime p) must have integral
slopes (cf. [2]). We divide our proof of Theorem 1 into the following four
cases.

t--2e

t=2e+l

C

Case 3

Case 2

H

Case 1

Case 4

Case 1 and Case 2. The discriminant of the classical orthogonal poly-
nomials (including Jacobi polynomials) are calculated by Hilbert [13] (see
also [18]). Using the representation of R(x) as Jacobi polynomials, we
get the following diophantine equations. First, let us consider Case I with
e=2q (even). Then we get
(4.1) (2q+ 1)X(X+ 1)... (X+ (2q- 1))---- Y

2q factors

for X=l-(d/4) (which is an integer) and an integer Y. For Case 1 with
e-- 2q+ 1 (odd), we have
(4.2) (X-- q)... (X- 1)(X/ 1)... (X+ q)-- Y

factors factors

with X= q+1+ (d/4) (which is an integer) and an integer Y. By slightly
modifying the argument of ErdSs (see [9], [10], and 3), we can easily get
a contradiction if e is not too small. Case 2 is finished similarly. (We can
in fact find a very small to for Theorem 1.)

Case :} and Case 4. These cases are more involved than the previous
cases, as the diophantine equations which come from the discriminant of
f(x) are not very nice, although we expect that this condition alone should
be enough to prove Theorem 1. For example, for Case 3 with e=2q (even),
we have
(4.3) 1.2 (2q)(X+2)(X+4)... (X+2q)

2q factors q factors

(X-t- 2q+ 1)(X+2q+3)... (X-2q+ (2q-- 1)) Z
factors
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with X=(d/2) (which is an integer) and an integer Z. Thus, we use another
technique. Again, let us consider the Case 3 with e--2q. Since f(x)=
(constant) ,--0 ax with

a=( e )(Y-i)...(Y-2q+2)(Y-2q+l)/(e-i)!i
with Y=4q+(d/2) (an integer), we get the ollowing result by using the
Newton polygon method" let p be a prime e. If Pl (Y--i), then p divides
Y--i with exponent a multiple of i+1. In particular, any prime divisor
p(e) of (Y--1)(Y--3)...(Y-2q+l) must divide the product with even
exponent. This condition is actually enough to finish the proof of Theorem
1 by using Theorem. 3.1 to.gether with a slight modification of the result of
ErdSs mentioned at the beginning o 3, but the value of to (in Theorem 1)
obtained by this proof is extremely large. The following alternative proof
of Theorem 1 gives a very small to. Again we consider Case 3 with e=2q.
The important fact here is that the factor (Y--1)(Y--3)...(Y--2q+l) is
exactly the actor (x+2q+ 1). (x +2q+ (2q-- 1)) in (4.3). This act is very
useful when applying the method of ErdSs [8, 9, 10] to show that (4.3) has
no integral solutions (if any prime pe which divides (X+2q+l).
(X+2q+ (2q- 1)) divides it with even exponent). In fact, by putting x+ 1
=ax with a square-free in (4.3), we evaluate I-[ a rom above and below,
and get a contradiction if t is not too small. The other cases Case 3 with
e=2q+l and Case 4 are dealt with similarly. (We can in fact find a very
small to for Theorem 1.)
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