16. A Remark on Ergodic Theorems for Pseudo-Resolvents

By Tosinobu MURAMATU

Department of Mathematics, University of Tsukuba

(Communicated by Kôsaku YOSIDA, M. J. A., March 12, 1985)

In the article [3] K. Yosida has shown the ergodic theorems for pseudoresolvents. In this note we give another formulation and a fairly short proof of these theorems.

1. Notations. By X we denote a Hausdorff topological linear space, and by $\mathcal{L}(X)$ we denote the algebra of all continuous linear operators from X into X. For a linear operator T by $\mathcal{D}(T)$, $\mathcal{R}(T)$ and $\mathcal{N}(T)$ we denote the domain, the range and the null space of T, respectively. For a subset M of X by M^a we denote its closure, and a sequence $\{\lambda_n\}$ of complex numbers is said to be a zero sequence if $\lambda_n \to 0$ as $n \to \infty$.

2. A pseudo-resolvent $\{R_{\lambda}\}_{\lambda \in D}$ is an $\mathcal{L}(X)$ -valued function on a subset D of complex plane satisfying the resolvent equation (1) $R_{\lambda}-R_{\mu}=(\mu-\lambda)R_{\lambda}R_{\mu}$ $(\lambda, \mu \in D),$

so that $R_{\lambda}R_{\mu} = R_{\mu}R_{\lambda}$.

Let $\{R_{\lambda}\}_{\lambda \in D}$ be a pseudo-resolvent, and set (2) $A_{\lambda} = I - \lambda R_{\lambda}$ for $\lambda \in \Delta = D$, where I stands for the identity operator, or (3) $A_{\lambda} = \lambda^{-1} R_{\lambda^{-1}}$ for $\lambda \in \Delta = \{\lambda; \lambda^{-1} \in D\}$. Then it is easy to see that the identity (4) $\lambda A_{\lambda} = \{\mu I + (\lambda - \mu) A_{\lambda}\} A_{\mu}$ holds for any $\lambda, \mu \in \Delta$. Therefore all $A_{\lambda}, \lambda \in \Delta$, have a common range and a common null space.

Our formulation of ergodic theorems are stated as follows:

Theorem 1. Let $\{R_{\lambda}\}$ be a pseudo-resolvent on D and assume that the family $\{\lambda R_{\lambda}\}_{\lambda \in D}$ of operators is equicontinuous.

In the case where 0 is an accumulation point of D we define A_{λ} by (2), and in the case where ∞ is an accumulation point of D we define A_{λ} by (3). In each case let R and N be the common range and the common null space of A_{λ} , $\lambda \in \Delta$, respectively.

Then;

- (a) $R^a \cap N = \{0\}$.
- (b) The following four conditions are equivalent;
- (i) $x \in R^a + N$,
- (ii) $\{\psi(A_{\lambda})x\}$ converges as $\lambda \rightarrow 0$ for any polynomial ψ ,
- (iii) There exist a polynomial ψ with $\psi(0) \neq \psi(1)$ and a zero sequence $\{\lambda_n\}$ in Δ such that $\{\psi(A_{\lambda_n})x\}$ converges as $n \to \infty$,
- (iv) There exist a polynomial ψ with $\psi(0) \neq \psi(1)$, a zero sequence $\{\lambda_n\}$

T. MURAMATU

in Δ and a point y in X such that $x = \lim_{n \to \infty} \psi(A_{\lambda_n})y$.

- (c) The following four conditions are equivalent;
- (i) $x \in \mathbb{R}^a$,
- (ii) $\psi(A_{\lambda})x \rightarrow \psi(1)x$ as $\lambda \rightarrow 0$ for any polynomial ψ ,
- (iii) There exist a polynomial ψ with $\psi(0) \neq \psi(1)$ and a zero sequence $\{\lambda_n\}$ in Δ such that $\lim_{n \to \infty} \psi(A_{\lambda_n})x = \psi(1)x$,
- (iv) There exist a polynomial ψ , a zero sequence $\{\lambda_n\}$ in Δ and a point y in X such that $x = \lim_{n \to \infty} \psi(A_{\lambda_n})y \psi(0)y$.
- (d) The following four conditions are equivalent;
- (i) $x \in N$,
- (ii) $\psi(A_{\lambda})x = \psi(0)x$ for any polynomial ψ and any λ in Δ ,
- (iii) There exist a polynomial ψ with $\psi(0) \neq \psi(1)$ and a zero sequence $\{\lambda_n\}$ in Δ such that $\lim_{n\to\infty} \psi(A_{\lambda_n})x = \psi(0)x$,
- (iv) There exist a polynomial ψ , a zero sequence $\{\lambda_n\}$ in Δ and a point y in X such that $x = \lim_{n \to \infty} \psi(A_{\lambda_n})y \psi(1)y$.

3. Before the proof of the theorem we notice the following lemmas, which are easily seen.

Lemma 1. Let a family $\{T_i\}$ of linear operators on X be equicontinuous. ous. Then the family $\{\psi(T_i)\}$ is also equicontinuous for any polynomial ψ .

Lemma 2. Let a family $\{T_i\}$ of linear operators on X be equicontinuous. If $x_i \rightarrow 0$ as $\lambda \rightarrow \lambda_0$, then $T_i x_i \rightarrow 0$ as $\lambda \rightarrow \lambda_0$.

Lemma 3. Let a family $\{T_{\lambda}\}$ of linear operators on X be equicontinuous. ous. Then the subspace $\{x ; \lim_{\lambda \to \lambda_0} T_{\lambda} x = 0\}$ is closed.

4. Proof of Theorem 1 part (c). Let $x = A_{\mu}y$ for some μ in Δ and y in x, and let ψ be a polynomial. Since $\psi(t) - \psi(1) = \phi(t)(t-1)$, where ϕ is a polynomial, and since $\{\phi(A_{\lambda})(A_{\lambda}-A_{\mu})\}$ is equicontinuous by Lemma 1, it follows from (4) and Lemma 2 that

$$\psi(A_{\lambda})x - \psi(1)x = \phi(A_{\lambda})(A_{\lambda} - I)A_{\mu}y$$

= $\phi(A_{\lambda})(A_{\lambda} - A_{\mu})\lambda(\lambda - \mu)^{-1}y \rightarrow 0$

as $\lambda \rightarrow 0$. Thus we have

$$R \subset P_{\psi} = \{x ; \lim_{\lambda \to 0} \{\psi(A_{\lambda}) - \psi(1)\} x = 0\}.$$

By Lemma 3 P_* is closed, so that it also contains R^a . Therefore (i) implies (ii).

Obviously, (iii) follows from (ii), and (iv) follows from (iii) by setting $y = \{\psi(1) - \psi(0)\}^{-1}x$. Finally, making use of the formula $\psi(t) = \psi(0) + t\phi_0(t)$, where ϕ_0 is a polynomial, we see that if (iv) is satisfied then

$$x = \lim \left\{ \psi(A_{\lambda_n}) - \psi(0) \right\} y = \lim A_{\lambda_n} \phi_0(A_{\lambda_n}) y \in \mathbb{R}^a.$$

5. Proof of Theorem 1 part (d). It is obvious that (i) implies (ii) and that (ii) implies (iii). The condition (iv) follows from (iii) by setting $y = \{\psi(0) - \psi(1)\}^{-1}x$. Assume that (iv) is satisfied. Then by part (c) (ii) in Theorem 1 we have

$$A_{\mu}x = \lim_{n \to \infty} \psi(A_{\lambda_n})A_{\mu}y - \psi(1)A_{\mu}y = \psi(1)A_{\mu}y - \psi(1)A_{\mu}y = 0$$

for any μ in Δ , which implies $x \in N$.

No. 3]

6. Proof of Theorem 1 part (a). Let $x \in R^a \cap N$. Then by (ii) in (c) $A_i x = 0 \rightarrow 1 \cdot x$ as $\lambda \rightarrow 0$, which implies x = 0.

7. Proof of Theorem 1 part (b). Let $x = x_1 + x_2$, $x_1 \in \mathbb{R}^a$, $x_2 \in \mathbb{N}$. Then, by (ii) in (c) and (d), we have

$$\psi(A_{\lambda})x = \psi(A_{\lambda})x_1 + \psi(0)x_2 \rightarrow \psi(1)x_1 + \psi(0)x_2 \qquad \text{as } \lambda \rightarrow 0,$$

$$(A_{\lambda} + I)(2^{-1}x_1 + x_2) \rightarrow x = x_1 + x_2 \qquad \text{as } \lambda \rightarrow 0.$$

Therefore (i) implies (ii) and (iv).

Obviously, (ii) implies (iii). Assume that (iii) is satisfied, and let w be the limit of a sequence $\{\psi(A_{\lambda_n})x\}$, where $\psi(0) \neq \psi(1)$. Then by part (c) and (d) of the theorem we have

$$w - \psi(0)x \in R^a$$
, $w - \psi(1)x \in N$,

which implies (i), because of $\psi(0) \neq \psi(1)$. Finally, assume that (iv) is satisfied. Then by (c) and (d) we have

 $x-\psi(0)y\in R^a$, $x-\psi(1)y\in N$,

so that by $\psi(0) \neq \psi(1) x$ belongs to $R^a + N$. This completes the proof of Theorem 1.

8. Corollary. Under the same assumptions as in Theorem 1 we have (5) $R^a = \Re(A_1^m)^a, \quad N = \Re(A_1^m),$

for any $\lambda \in \Delta$ and any positive integer m.

Proof. Set $\psi(t) = t^m$. If $x \in \mathbb{R}^a$, then $x \in \mathcal{R}(A_{\lambda}^m)^a$, since $x = \psi(1)x = \lim_{\lambda \to 0} A_{\lambda}^m x$. This and an obvious inclusion $\mathcal{R}(A_{\lambda}^m)^a \subset \mathcal{R}(A_{\lambda})^a = \mathbb{R}^a$ give the conclusion.

Next, assume that $x \in \mathcal{N}(A_{\lambda}^{m})$. Then from Theorem 1 (d) it follows that $-x = \lim_{\lambda \to 0} A_{\lambda}^{m} x - 1^{m} x$ belongs to N. This, combined with an obvious inclusion $\mathcal{N}(A_{\lambda}^{m}) \supset \mathcal{N}(A_{\lambda})$, gives the conclusion.

9. Applications of non-negative operators.

Definition. A linear operator A defined on a subspace $\mathcal{D}(A)$ of X into X is said to be *left* (or *right*) *non-negative* if there exists a positive constant λ_0 such that open interval $(-\lambda_0, 0)$ (or $(-\infty, -\lambda_0)$) is contained in the resolvent set of A and the function $\{\lambda(\lambda I + A)^{-1}\}$ is equicontinuous in $(0, \lambda_0)$ (or (λ_0, ∞)) (cf. [2]).

Theorem 2. Let A be a left non-negative operator in X. Then, the conditions (a) $x \in \mathcal{R}(A)^a + \mathcal{N}(A)$, (b) $x \in \mathcal{R}(A)^a$, and (c) $x \in \mathcal{N}(A)$ are equivalent to each one of the conditions (ii)~(iv) of part (b), (c), and (d) in Theorem 1 with A_{λ} replaced by $A(\lambda I + A)^{-1}$, respectively.

Proof. Since $I - \lambda(\lambda I + A)^{-1} = A(\lambda I + A)^{-1}$, $\Re(A(\lambda I + A)^{-1}) = \Re(A)$, and $\Re(A(\lambda I + A)^{-1}) = \Re(A)$, this theorem is a special case of Theorem 1.

Theorem 3. Let A be a right non-negative operator. Then the following conditions are mutually equivalent;

- (i) $x \in \mathcal{D}(A)^a$,
- (ii) $\psi(\lambda(\lambda I + A)^{-1})x \rightarrow \psi(1)x \text{ as } \lambda \rightarrow +\infty \text{ for any polynomial } \psi$,
- (iii) There exist a polynomial ψ with $\psi(0) \neq \psi(1)$ and a sequence $\{\lambda_n\}$ which diverges to $+\infty$ such that $\psi(\lambda_n(\lambda_n I + A)^{-1})x$ converges as $n \rightarrow \infty$.

T. MURAMATU

(iv) There exist a polynomial ψ , a point y in X and a sequence $\{\lambda_n\}$ which diverges to $+\infty$ as $n \to \infty$ such that $x = \lim_{n \to \infty} \psi(\lambda_n (\lambda_n I + A)^{-1})y - \psi(0)y.$

Proof. This result follows from Theorem 1, since $\Re(\lambda(\lambda I+A)^{-1}) = \mathcal{D}(A)$, $\Re(\lambda(\lambda I+A)^{-1}) = \{0\}$.

References

- Kato, T.: Remarks on pseudo-resolvents and infinitesimal generators of semigroups. Proc. Japan Acad., 35, 467-468 (1959).
- [2] Komatsu, H.: Fractional powers of operators, III, negative powers. J. Math. Soc. Japan, 21, 205-220 (1969).
- [3] Yosida, K.: Ergodic theorems for pseudo-resolvents. Proc. Japan Acad., 37, 422-425 (1961).