16. A Remark on Ergodic Theorems for Pseudo-Resolvents

By Tosinobu Muramatu
Department of Mathematics, University of Tsukuba
(Communicated by Kôsaku Yosida, m. J. A., March 12, 1985)

In the article [3] K. Yosida has shown the ergodic theorems for pseudoresolvents. In this note we give another formulation and a fairly short proof of these theorems.

1. Notations. By X we denote a Hausdorff topological linear space, and by $\mathcal{L}(X)$ we denote the algebra of all continuous linear operators from X into X. For a linear operator T by $\mathscr{D}(T), \mathcal{R}(T)$ and $\mathscr{N}(T)$ we denote the domain, the range and the null space of T, respectively. For a subset M of X by M^{a} we denote its closure, and a sequence $\left\{\lambda_{n}\right\}$ of complex numbers is said to be a zero sequence if $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$.
2. A pseudo-resolvent $\left\{R_{\lambda}\right\}_{\lambda \in D}$ is an $\mathcal{L}(X)$-valued function on a subset D of complex plane satisfying the resolvent equation
(1)

$$
R_{\lambda}-R_{\mu}=(\mu-\lambda) R_{\lambda} R_{\mu} \quad(\lambda, \mu \in D),
$$

so that $R_{\lambda} R_{\mu}=R_{\mu} R_{\lambda}$.
Let $\left\{R_{\lambda}\right\}_{\lambda \in D}$ be a pseudo-resolvent, and set

$$
\begin{equation*}
A_{\lambda}=I-\lambda R_{\lambda} \quad \text { for } \lambda \in \Delta=D, \tag{2}
\end{equation*}
$$

where I stands for the identity operator, or
(3) $\quad A_{\lambda}=\lambda^{-1} R_{\lambda-1} \quad$ for $\lambda \in \Delta=\left\{\lambda ; \lambda^{-1} \in D\right\}$.

Then it is easy to see that the identity

$$
\begin{equation*}
\lambda A_{\lambda}=\left\{\mu I+(\lambda-\mu) A_{\lambda}\right\} A_{\mu} \tag{4}
\end{equation*}
$$

holds for any $\lambda, \mu \in \Delta$. Therefore all $A_{\lambda}, \lambda \in \Delta$, have a common range and a common null space.

Our formulation of ergodic theorems are stated as follows:
Theorem 1. Let $\left\{R_{\lambda}\right\}$ be a pseudo-resolvent on D and assume that the family $\left\{\lambda R_{\lambda}\right\}_{\lambda_{\in D}}$ of operators is equicontinuous.

In the case where 0 is an accumulation point of D we define A_{λ} by (2), and in the case where ∞ is an accumulation point of D we define $A_{\lambda} b y$ (3). In each case let R and N be the common range and the common null space of $A_{\lambda}, \lambda \in \Delta$, respectively.

Then;
(a) $R^{a} \cap N=\{0\}$.
(b) The following four conditions are equivalent;
(i) $x \in R^{a}+N$,
(ii) $\left\{\psi\left(A_{2}\right) x\right\}$ converges as $\lambda \rightarrow 0$ for any polynomial ψ,
(iii) There exist a polynomial ψ with $\psi(0) \neq \psi(1)$ and a zero sequence $\left\{\lambda_{n}\right\}$ in Δ such that $\left\{\psi\left(A_{\lambda_{n}}\right) x\right\}$ converges as $n \rightarrow \infty$,
(iv) There exist a polynomial ψ with $\psi(0) \neq \psi(1)$, a zero sequence $\left\{\lambda_{n}\right\}$
in Δ and a point y in X such that $x=\lim _{n \rightarrow \infty} \psi\left(A_{\lambda_{n}}\right) y$.
(c) The following four conditions are equivalent;
(i) $x \in R^{a}$,
(ii) $\psi\left(A_{\lambda}\right) x \rightarrow \psi(1) x$ as $\lambda \rightarrow 0$ for any polynomial ψ,
(iii) There exist a polynomial ψ with $\psi(0) \neq \psi(1)$ and a zero sequence $\left\{\lambda_{n}\right\}$ in Δ such that $\lim _{n \rightarrow \infty} \psi\left(A_{\lambda_{n}}\right) x=\psi(1) x$,
(iv) There exist a polynomial ψ, a zero sequence $\left\{\lambda_{n}\right\}$ in Δ and a point y in X such that $x=\lim _{n \rightarrow \infty} \psi\left(A_{\lambda_{n}}\right) y-\psi(0) y$.
(d) The following four conditions are equivalent;
(i) $x \in N$,
(ii) $\psi\left(A_{\lambda}\right) x=\psi(0) x$ for any polynomial ψ and any λ in Δ,
(iii) There exist a polynomial ψ with $\psi(0) \neq \psi(1)$ and a zero sequence $\left\{\lambda_{n}\right\}$ in Δ such that $\lim _{n \rightarrow \infty} \psi\left(A_{\lambda_{n}}\right) x=\psi(0) x$,
(iv) There exist a polynomial ψ, a zero sequence $\left\{\lambda_{n}\right\}$ in Δ and a point y in X such that $x=\lim _{n \rightarrow \infty} \psi\left(A_{\lambda_{n}}\right) y-\psi(1) y$.
3. Before the proof of the theorem we notice the following lemmas, which are easily seen.

Lemma 1. Let a family $\left\{T_{\lambda}\right\}$ of linear operators on X be equicontinuous. Then the family $\left\{\psi\left(T_{\lambda}\right)\right\}$ is also equicontinuous for any polynomial ψ.

Lemma 2. Let a family $\left\{T_{\lambda}\right\}$ of linear operators on X be equicontinuous. If $x_{\lambda} \rightarrow 0$ as $\lambda \rightarrow \lambda_{0}$, then $T_{\lambda} x_{\lambda} \rightarrow 0$ as $\lambda \rightarrow \lambda_{0}$.

Lemma 3. Let a family $\left\{T_{\lambda}\right\}$ of linear operators on X be equicontinuous. Then the subspace $\left\{x ; \lim _{\lambda \rightarrow \lambda_{0}} T_{\lambda} x=0\right\}$ is closed.
4. Proof of Theorem 1 part (c). Let $x=A_{\mu} y$ for some μ in Δ and y in x, and let ψ be a polynomial. Since $\psi(t)-\psi(1)=\phi(t)(t-1)$, where ϕ is a polynomial, and since $\left\{\phi\left(A_{\lambda}\right)\left(A_{\lambda}-A_{\mu}\right)\right\}$ is equicontinuous by Lemma 1, it follows from (4) and Lemma 2 that

$$
\begin{aligned}
\psi\left(A_{\lambda}\right) x-\psi(1) x & =\phi\left(A_{\lambda}\right)\left(A_{\lambda}-I\right) A_{\mu} y \\
& =\phi\left(A_{\lambda}\right)\left(A_{\lambda}-A_{\mu}\right) \lambda(\lambda-\mu)^{-1} y \rightarrow 0
\end{aligned}
$$

as $\lambda \rightarrow 0$. Thus we have

$$
R \subset P_{\psi}=\left\{x ; \lim _{\lambda \rightarrow 0}\left\{\psi\left(A_{\lambda}\right)-\psi(1)\right\} x=0\right\} .
$$

By Lemma $3 P_{\psi}$ is closed, so that it also contains R^{a}. Therefore (i) implies (ii).

Obviously, (iii) follows from (ii), and (iv) follows from (iii) by setting $y=\{\psi(1)-\psi(0)\}^{-1} x$. Finally, making use of the formula $\psi(t)=\psi(0)+t \phi_{0}(t)$, where ϕ_{0} is a polynomial, we see that if (iv) is satisfied then

$$
x=\lim _{n \rightarrow \infty}\left\{\psi\left(A_{\lambda_{n}}\right)-\psi(0)\right\} y=\lim _{n \rightarrow \infty} A_{\lambda_{n}} \phi_{0}\left(A_{\lambda_{n}}\right) y \in R^{a} .
$$

5. Proof of Theorem 1 part (d). It is obvious that (i) implies (ii) and that (ii) implies (iii). The condition (iv) follows from (iii) by setting $y=\{\psi(0)-\psi(1)\}^{-1} x$. Assume that (iv) is satisfied. Then by part (c) (ii) in Theorem 1 we have

$$
A_{\mu} x=\lim _{n \rightarrow \infty} \psi\left(A_{\lambda_{n}}\right) A_{\mu} y-\psi(1) A_{\mu} y=\psi(1) A_{\mu} y-\psi(1) A_{\mu} y=0
$$

for any μ in Δ, which implies $x \in N$.
6. Proof of Theorem 1 part (a). Let $x \in R^{a} \cap N$. Then by (ii) in (c) $A_{\lambda} x=0 \rightarrow 1 \cdot x$ as $\lambda \rightarrow 0$, which implies $x=0$.
7. Proof of Theorem 1 part (b). Let $x=x_{1}+x_{2}, x_{1} \in R^{a}, x_{2} \in N$. Then, by (ii) in (c) and (d), we have

$$
\begin{array}{ll}
\psi\left(A_{\lambda}\right) x=\psi\left(A_{\lambda}\right) x_{1}+\psi(0) x_{2} \rightarrow \psi(1) x_{1}+\psi(0) x_{2} & \text { as } \lambda \rightarrow 0, \\
\left(A_{\lambda}+I\right)\left(2^{-1} x_{1}+x_{2}\right) \rightarrow x=x_{1}+x_{2} & \text { as } \lambda \rightarrow 0 .
\end{array}
$$

Therefore (i) implies (ii) and (iv).
Obviously, (ii) implies (iii). Assume that (iii) is satisfied, and let w be the limit of a sequence $\left\{\psi\left(A_{\lambda_{n}}\right) x\right\}$, where $\psi(0) \neq \psi(1)$. Then by part (c) and (d) of the theorem we have

$$
w-\psi(0) x \in R^{a}, \quad w-\psi(1) x \in N,
$$

which implies (i), because of $\psi(0) \neq \psi(1)$. Finally, assume that (iv) is satisfied. Then by (c) and (d) we have

$$
x-\psi(0) y \in R^{a}, \quad x-\psi(1) y \in N,
$$

so that by $\psi(0) \neq \psi(1) x$ belongs to $R^{a}+N$. This completes the proof of Theorem 1.
8. Corollary. Under the same assumptions as in Theorem 1 we have (5)

$$
R^{a}=\mathcal{R}\left(A_{\lambda}^{m}\right)^{a}, \quad N=গ \mathcal{I}\left(A_{\lambda}^{m}\right),
$$

for any $\lambda \in \Delta$ and any positive integer m.
Proof. Set $\psi(t)=t^{m}$. If $x \in R^{a}$, then $x \in \mathcal{R}\left(A_{\lambda}^{m}\right)^{a}$, since $x=\psi(1) x$ $=\lim _{\lambda \rightarrow 0} A_{\lambda}^{m} x$. This and an obvious inclusion $\mathcal{R}\left(A_{\lambda}^{m}\right)^{a} \subset \mathcal{R}\left(A_{\lambda}\right)^{a}=R^{a}$ give the conclusion.

Next, assume that $x \in \mathscr{N}\left(A_{\lambda}^{m}\right)$. Then from Theorem 1 (d) it follows that $-x=\lim _{\lambda \rightarrow 0} A_{\lambda}^{m} x-1^{m} x$ belongs to N. This, combined with an obvious inclusion $\mathscr{N}\left(A_{\lambda}^{m}\right) \supset \mathscr{I}\left(A_{2}\right)$, gives the conclusion.
9. Applications of non-negative operators.

Definition. A linear operator A defined on a subspace $\mathscr{D}(A)$ of X into X is said to be left (or right) non-negative if there exists a positive constant λ_{0} such that open interval $\left(-\lambda_{0}, 0\right)$ (or $\left(-\infty,-\lambda_{0}\right)$) is contained in the resolvent set of A and the function $\left\{\lambda(\lambda I+A)^{-1}\right\}$ is equicontinuous in ($0, \lambda_{0}$) (or (λ_{0}, ∞)) (cf. [2]).

Theorem 2. Let A be a left non-negative operator in X. Then, the conditions (a) $x \in \mathscr{R}(A)^{a}+\mathscr{N}(A)$, (b) $x \in \mathscr{R}(A)^{a}$, and (c) $x \in \mathscr{N}(A)$ are equivalent to each one of the conditions (ii) ~(iv) of part (b), (c), and (d) in Theorem 1 with A_{λ} replaced by $A(\lambda I+A)^{-1}$, respectively.

Proof. Since $I-\lambda(\lambda I+A)^{-1}=A(\lambda I+A)^{-1}, \mathcal{R}\left(A(\lambda I+A)^{-1}\right)=\mathscr{R}(A)$, and $\mathcal{N}\left(A(\lambda I+A)^{-1}\right)=\mathscr{N}(A)$, this theorem is a special case of Theorem 1.

Theorem 3. Let A be a right non-negative operator. Then the following conditions are mutually equivalent;
(i) $x \in \mathscr{D}(A)^{a}$,
(ii) $\psi\left(\lambda(\lambda I+A)^{-1}\right) x \rightarrow \psi(1) x$ as $\lambda \rightarrow+\infty$ for any polynomial ψ,
(iii) There exist a polynomial ψ with $\psi(0) \neq \psi(1)$ and a sequence $\left\{\lambda_{n}\right\}$ which diverges to $+\infty$ such that $\psi\left(\lambda_{n}\left(\lambda_{n} I+A\right)^{-1}\right) x$ converges as $n \rightarrow \infty$.
(iv) There exist a polynomial ψ, a point y in X and a sequence $\left\{\lambda_{n}\right\}$ which diverges to $+\infty$ as $n \rightarrow \infty$ such that

$$
x=\lim _{n \rightarrow \infty} \psi\left(\lambda_{n}\left(\lambda_{n} I+A\right)^{-1}\right) y-\psi(0) y
$$

Proof. This result follows from Theorem 1, since $\mathcal{R}\left(\lambda(\lambda I+A)^{-1}\right)$ $=\mathscr{D}(A), \mathscr{I}\left(\lambda(\lambda I+A)^{-1}\right)=\{0\}$.

References

[1] Kato, T.: Remarks on pseudo-resolvents and infinitesimal generators of semigroups. Proc. Japan Acad., 35, 467-468 (1959).
[2] Komatsu, H.: Fractional powers of operators, III, negative powers. J. Math. Soc. Japan, 21, 205-220 (1969).
[3] Yosida, K.: Ergodic theorems for pseudo-resolvents. Proc. Japan Acad., 37, 422-425 (1961).

