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16. A Remark on Ergodic Theorems for Pseudo.Resolvents

By Tosinobu ]V[URAMATU
Department of Mathematics, University of Tsukuba

(Communicated by K5saku YOSIDA, M. ,. A., March 12, 1985)

In the article [3] K. Yosida has shown the ergodic theorems for pseudo-
resolvents. In this note we give another formulation and a fairly short
proof of these theorems.

1o Notations. By X we denote a Kausdorff topological linear space,
and by A:(X) we denote the algebra of all continuous linear operators from
X into X. For a linear operator T by .q)(T), (T) and fl(T) we denote the
domain, the range and the null space of T, respectively. For a subset M
of X by M we denote its closure, and a sequence {2} of complex numbers
is said to be a zero sequence if -0 as noo.

2. A pseudo-resolvent {R}e is an A:(X)-valued function on a subset
D of complex plane satisfying the resolvent equation
( 1 ) R-R--(I-2)RR (, t e D),
so that RR,--R,R.

Let {R}e be a pseudo-resolvent, and set
( 2 ) A-I-2R for e =D,
where I stands for the identity operator, or
( 3 ) A=-R_, for 2 e z={ - e D}.
Then it is easy to see that the identity
( 4 ) 2A-----{II+(2--I)A}A
holds for any 2,/ e z. Therefore all A, 2 e z/, have a common range and a
common null space.

Our formulation of ergodic theorems are stated as follows:
Theorem 1. Let {R} be a pseudo-resolvent on D and assume that the

family {2R}e of operators is equicontinuous.
In the case where 0 is an accumulation point of D we define A by (2),

and in the case where oo is an accumulation point of D we define A by (3).
In each case let R and N be the common range and the common null space
of A, 2 e , respectively.

Then
(a)
(b)
(i)
(ii)
(iii)

(iv)

R [ N-- {0}.
The following four conditions are equivalent;
x e R+N,
{4x(A)x} converges as -0 for any polynomial
There exist a polynomial 4x with (0)=/=(1) and a zero sequence
{2} in such that {(A)x} converges as n-oo,
There exist a polynomial 4x with (0):/=(1), a zero sequence
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(c)
(i)
(ii)
(iii)

(iv)

(d)
(i)
(ii)
(iii)

(iv)

in and a point y in X such that x=lim 4x(A)y.
The following four conditions are equivalent;
x e R,
(A,)x--4x(1)x as -+0 for any polynomial ,
There exist a polynomial with (0)=/=(1) and a zero sequence
{2n} in such that limn_ 4x(A.)x=(1)x,
There exist a polynomial , a zero sequence {2} in and a point
y in X such that x--lim_ 4x(A,.)y--(O)y.
The following four conditions are equivalent;
xeN,
4x(A,)x=(O)x for any polynomial 4x and any
There exist a polynomial 4x with (0)=/=(1) and a zero sequence
{2} in such that lim_ 4x(A,)x--4x(O)x,
There exist a polynomial 4x, a zero sequence {2n} in and a point
y in X such that x---limn_ 4x(A)y--4X(1)y.

Before the proof of the theorem we notice the following lemmas,
which are easily seen.

Lemma 1. Let a family {T,} of linear operators on X be equicontinu-
ous. Then the family {(T)} is also equicontinuous for any polynomial 4x.

Lemma 2. Let a family {T} of linear operators on X be equicontinu-
ous. If x,-+O as -o, then Tx,--.O as --o.

Lemma :. Let a family {T} of linear operators on X be equicontinu-
ous. Then the subspace {x; lim_0 Tx=0} is closed.

4. Proof of Theorem 1 part (c). Let x--A,y or some/ in z/ and y
in x, and let be a polynomial. Since 4x(t)-(1)-(t)(t-1), where q is a
polynomial, and since {(A)(A,-A,)} is equicontinuous by Lemma 1, it
ollows from (4) and Lemma 2 that

(A)x p(1)x q(A)(A I)A,y
gi(A)(A--A)(--/)-ly-*0

as 2-+0. Thus we have
RcP,--{x lim {(A)--(1)}x--O}.

--,0

By Lemma 3 P, is closed, so that it also contains R. Therefore (i) implies
(ii).

Obviously, (iii) follows from. (ii), and (iv) follows from (iii) by setting
y={4x(1)-(O)}-x. Finally, making use of the formula 4x(t)=(O)+to(t),
where 0 is a polynomial, we see that if (iv) is satisfied then

x --lim (p(A)--p(O)}y--limAo(A)y e R.
5. Proo of Theorem I part (d). It is obvious that (i) implies (ii)

and that (ii) implies (iii). The condition (iv) follows from (iii) by setting
y={(0)-(1)}-x. Assume that (iv) is satisfied. Then by part (c) (ii) in
Theorem 1 we have

n,x lim (n.)A,y-(1)A,y=(1)A,y-(1)A,y=0

or any/ in A, which implies x e N.
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5. Proof of Theorem 1 part (a). Let x e RN. Then by (ii) in (c)
Ax--Ol. x as 0, which implies x-O.

7. Proof of Theorem 1 part (b). Let x :xl+ x2, xl e R, x2 e N. Then,
by (ii) in (c) and (d), we have

(A)x--4x(A)x+(O)x.-+(1)x+(O)x as -0,
(A+I)(2-x+ x2)--x=x+x as --0.

Therefore (i) implies (ii) and (iv).
Obviously, (ii) implies (iii). Assume that (iii) is satisfied, and let w be

the limit of a sequence {(A)x}, where (0):/:(1). Then by part (c) and
(d) of the theorem we have

w-4x(O)x e R, w-(1)x e N,
which implies (i), because of (0):/:(1). Finally, assume that (iv) is
satisfied. Then by (c) and (d) we have

x-4x(O)y e R, x-(1)y e N,
so that by (0):/:(1) x belongs to R+N. This completes the proof
Theorem 1.

8. Corollary. Under the same assumptions as in Theorem I we have
( 5 ) R (n), N=(A?),
for any e and any positive integer m.

Proof. Set 4x(t)=t. If x e R, then x e _q(A), since x=(1)x
=lim0 A?x. This and an obvious inclusion (A?) (A)--R give
the conclusion.

Next, assume that x e (A?). Then from. Theorem 1 (d) it follows
that --x---lim0Ax--lx belongs to N. This, combined with an obvious
inclusion (A)(A), gives the conclusion.

9. Applications of non.negative operators.

Definition. A linear operator A defined on a subspace_(A)of X into

X is said to be left (or right) non-negative if there exists a positive con-
stant 20 such that open interval (--20, 0) (or (--o, --20)) is contained in the
resolvent set of A and the function {2(2I+A)-} is equicontinuous in (0,
(or (0, c)) (cf. [2]).

Theorem 2. Let A be a left non-negative operator in X. Then, the
conditions (a) x e .(A)+(A), (b) x e (A), and (c) x e (A) are equiv-

alent to ea.ch one of the conditions (ii)-(iv) of part (b), (c), and (d) in

Theorem 1 with A replaced by A(2I+A)-, respectively.

Proof. Since I-2(2I+A)-=A(2I+A)-, (A(2I+A)-9=(A), and
(A(2I+A)-)-.(A), this theorem is a special case of Theorem 1.

Theorem :. Let A be a right non-negative operator. Then the fol-
lowing conditions are mutually equivalent;

( i ) xe(A),
(ii) 4(2(2I+ A)-)x-(1)x as -++ c for any polynomial ,
(iii) There exist a polynomial with (0)=/=(1) and a sequence

which diverges to +c such that 4X(2n(2nI+A)-)x converges as

n--->c
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(iv) There exist a polynomial 4x, a point y in X and a sequence {2}
which diverges to + a.s n--c such that

x--lim((I+A)-)y-4x(O)y.

Proof. This result follows rom Theorem 1, since (2(2I+A)-)
=_(A), ((I+A)-’) {0}.

References

Kato, T.: Remarks on pseudo-resolvents and infinitesimal generators of semi-
groups. Proc. Japan Acad., 35, 467-468 (1959).

Komatsu, H.: Fractional powers of operators, III, negative powers. J. Math.
Soc. Japan, 21, 205-220 (1969).

Yosida, K.: Ergodic theorems for pseudo-resolvents. Proc. Japan Acad., 37,
422-425 (1961).


