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16. A Remark on Ergodic Theorems for Pseudo-Resolvents

By Tosinobu MURAMATU
Department of Mathematics, University of Tsukuba

(Communicated by Kosaku YOSIDA, M. J. A.,, March 12, 1985)

In the article [3] K. Yosida has shown the ergodic theorems for pseudo-
resolvents. In this note we give another formulation and a fairly short
proof of these theorems.

1. Notations. By X we denote a Hausdorff topological linear space,
and by _£(X) we denote the algebra of all continuous linear operators from
X into X. For a linear operator T by 9(T), R(T) and JI(T) we denote the
domain, the range and the null space of T, respectively. For a subset M
of X by M* we denote its closure, and a sequence {1,} of complex numbers
is said to be a zero sequence if 1,—0 as n—oo.

2. A pseudo-resolvent {R;},., is an _£(X)-valued function on a subset
D of complex plane satisfying the resolvent equation
(1) R,—R,=(u—DR,R, (4, peD),
so that R,R,=R,R,.

Let {R}:c» be a pseudo-resolvent, and set
(2) A,=I—2R, for ie 4=D,
where I stands for the identity operator, or
(8) A, =2"'R,., for 2e 4={2;2'e D}.

Then it is easy to see that the identity

(4) A4, ={pl+(A—pA,}A,

holds for any 4, u€ 4. Therefore all A,, 1€ 4, have a common range and a
common null space.

Our formulation of ergodic theorems are stated as follows:

Theorem 1. Let {R;} be a pseudo-resolvent on D and assume that the
family {AR},cp of operators is equicontinuous.

In the case where 0 is an accumulation point of D we define A, by (2),
and in the case where « is an accumulation point of D we define A, by (3).
In each case let R and N be the common range and the common null space
of A,, A€ 4, respectively.

Then;

(@) R*NN={0}.

(b) The following four conditions are equivalent ;

(i) xzeR®+N,

(ii) {Y(A)x} converges as 2—0 for any polynomial +,

(iii) There exist a polynomial » with ¥(0)#=\(1) and a zero sequence

{2.} tn 4 such that {y(A,)x} converges as n—oo,
(iv) There exist a polynomial \» with 4(0)#=(1), & zero sequence {1,}
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in 4 and a point y in X such that x=lim,_ ., ¥(4,)y.

(¢) The following four conditions are equivalent ;

(i) xzeRs,

(ii) Y(A)z—vQ)x as 2—0 for any polynomial ,

(iii) There exist a polynomial » with (0)£=(1) and a zero sequence

{4.} in 4 such that lim,_. (4, )x=y)x,
(iv) There exist a polynomial 4, a zero sequence {1,} in 4 and a point
y in X such that x=lim, .. y(4,)y—0)y.

(d) The following four conditions are equivalent ;

(i) xeN,

(i) Y(A)x=+(0)x for any polynomial » and any A in 4,

(iii) There exist a polynomial ¥ with ¥(0)£+(1) and a zero sequence

{2,} in 4 such that lim, ., (A, )2 =),
(iv) There exist a polynomial ¥, a zero sequence {1,} in 4 and a point
y tn X such that x=lim, .. ¥(4,)y—v1)y.

3. Before the proof of the theorem we notice the following lemmas,
which are easily seen.

Lemma 1. Let a family {T,} of linear operators on X be equicontinu-
ous. Then the family {v(T))} is also equicontinuous for any polynomial +r.

Lemma 2. Let a family {T} of linear operators on X be equicontinu-
ous. If x,—0 as 1—2, then T,x,—0 as 1—4,.

Lemma 3. Let a family {T} of linear operators on X be equicontinu-
ous. Then the subspace {x; lim,., T,x=0} is closed.

4. Proof of Theorem 1 part (c). Let x=A,y for some g in 4 and y
in #, and let ¢ be a polynomial. Since () — (1) =¢(t)(t—1), where ¢ is a
polynomial, and since {¢(4,)(4,—A4,)} is equicontinuous by Lemma 1, it
follows from (4) and Lemma 2 that

WAYr—yDr=¢(A)(A,—DAy
=¢(A)(A;,—A)2(A—p) 'y—0
as —0. Thus we have
RCP,={a; lim {)(4)—+(D}e=0}.
By Lemma 3 P, is closed, so that it also contains R*. Therefore (i) implies
(i).

Obviously, (iii) follows from (ii), and (iv) follows from (iii) by setting
y={y(1)—(0)}-'2. Finally, making use of the formula -(t) =+(0)+t¢,(¢),
where ¢, is a polynomial, we see that if (iv) is satisfied then

x=}'1}£ {\V(Az,.)—‘lf(o)}?/=£i_.rg A, $(A,)y € Re.

5. Proof of Theorem 1 part (d). It is obvious that (i) implies (ii)
and that (ii) implies (iii). The condition (iv) follows from (iii) by setting
y={(0)—y@)}'z. Assume that (iv) is satisfied. Then by part (c) (ii) in
Theorem 1 we have

Ao =lm $(4,) 4,y — 4D A,y =4O A,y — DA,y =0
for any p in 4, which implies x € N.
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6. Proof of Theorem 1 part (a). Let xe€ R°NN. Then by (ii) in (c)
A;x=0—1.2 as A—0, which implies £=0.

7. Proof of Theorem 1 part (b). Let x=2x,+x,, x, € R*, 2, N. Then,
by (@ii) in (c) and (d), we have

Y(A)x =Y (A)%+ (02, > (Dx,+(0)2,  as 2—0,
(A +D@ 'z, +a) =2+, as 1—0.
Therefore (i) implies (ii) and (iv).

Obviously, (ii) implies (iii). Assume that (iii) is satisfied, and let w be
the limit of a sequence {y(4,,)x}, where ¥(0)#+-(1). Then by part (c) and
(d) of the theorem we have

w—(0)x e R?, w—y1)x e N,
which implies (i), because of r(0)s#+(1). Finally, assume that (iv) is
satisfied. Then by (c) and (d) we have

z—y0)y e R,  z—yQ)yeN,
so that by v(0)£4(1) = belongs to R*+N. This completes the proof of
Theorem 1.

8. Corollary. Under the same assumptions as in Theorem 1 we have
(5) R*=Q(AD)*, N=TJ1(AD),
for any 2 e 4 and any positive integer m.

Proof. Set (t)=t™. If xze R* then xze R(AM* since z=+(1)x
=lim,.,A?x. This and an obvious inclusion R(AM*c R(A)*=R* give
the conclusion.

Next, assume that x e JI(A7). Then from Theorem 1 (d) it follows
that —x=1im,_ , A"z —1™x belongs to N. This, combined with an obvious
inclusion JUA™MDII(A)), gives the conclusion.

9. Applications of non-negative operators.

Definition. A linear operator A defined on a subspace 9(4) of X into
X is said to be left (or right) non-negative if there exists a positive con-
stant 4, such that open interval (—2, 0) (or (— oo, —2;)) is contained in the
resolvent set of A and the function {2(AI+ 4)-'} is equicontinuous in (0, 2,
(or (4, o0)) (cf. [2]).

Theorem 2. Let A be a left non-negative operator in X. Then, the
conditions (a) x e R(A)*+TU(A), (b) e R(A)*, and (c) x € TUA) are equiv-
alent to each one of the conditions (ii)~(iv) of part (b), (c), and (d) in
Theorem 1 with A, replaced by AQAI+ A)-*, respectively.

Proof. Since I—2AI+A)'=AQI+A)", RAQ+A)"H=R(A4), and
JUAQI+ A)~Y)=TI(A), this theorem is a special case of Theorem 1.

Theorem 3. Let A be a right non-negative operator. Then the fol-
lowing conditions are mutually equivalent ;

(i) zeDA)*,

(ii) YQ@AI+A) Hz—p )z as i—>—+ oo for any polynomial +,

(iii) There exist a polynomial  with (0)#+(1) and a sequence {2,}

which diverges to + oo such that ¥(2,(2,1+A) )z converges as

NnN—>o0.,
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@(iv) There exist a polynomial , & point y in X and a sequence {4,}
which diverges to 4 oo as n—oo such that
r=lim (2,(2,14+A4)" Yy —(0)y.

n—0

Proof. This result follows from Theorem 1, since RQAQAI+A)Y)
=9D(4), JI2AQAI+ A)-)={0}.
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