No. 2] Proc. Japan Acad., 61, Ser. A (1985) 51

14. On Z.Valued Additive Functions on Module Category

By Takao IRITE
College of Liberal Arts and Sciences, Kitasato University
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Introduction. Throughout this note, B means a commutative ring
with identity and C(R) the category of finitely generated unitary R-modules.
Let S be an additive system, i.e. an algebraic system in which addition is
defined. A function L from C(R) to S will be called an S-valued additive
function over R, if for any exact sequence 0—-M'—M—M"—0 in C(R), the
relation L(M)=L(M’)+ L(M") holds. When we want to emphasize that L
is over R, we shall write L, instead of L. In [6], [9] such functions are
studied for the case S=R*U{co}. In this note, we study exclusively the
case S=Z. So we shall simply write “additive functions” for Z-valued
additive functions. Some arguments in [6], [9] are, however, valid also in
our case.

1. Extension of additive functions.

Theorem 1.1. Let R be noetherian, a an ideal of R and n o natural
number. Put A=R/a, B=R/a". Then any additive function L, over A
can be extended to B, i.e. thereis an additive function L, over B, such that
L,(M)=Ly(M) for any A-module M.

Proof. We write the proof of the case n=2, since the general case
follows easily by induction. So we put B=R/a*’. Let N be a B-module.
We have an exact sequence

0 aN—>N—>N/aN-—>0.
Since a(@N)=0 and a(lN/aN)=0, L,(aN) and L,(N/aN) are defined. Put
Ly(N)=L,(aN)+ L,(N/aN). If there is another exact sequence of B-
modules

0—>N,—>N N,—0
such that aN,=aN,=0, then we have a commutative diagram with exact
rows:

0 aN——>N—>N/aN 0
L
0—N—>N—> N, —>0
From this diagram, we have Ker ¢ ~ Coker 4. Since N, and N/aN are
A-modules, Ker ¢ and Coker 4 are also A-modules. Thus we have

L,XKer ¢)=L (N /aN)—L,N;)=L,Coker y)=L,(N,)—L4(aN),
and hence

L,N/aN)+L(aN)=L,N )+ L,(N>).
Now we prove the additivity of L. Let there be given an exact sequence
of B-modules
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0—M,—>M,——>M,—>0.
From this exact sequence, we obtain a commutative diagram with exact
rows and columns:

0 0 0

» Y
0—>K,——> aM, AN aM, —>0

A4 Y
0O—>M—> M, —> M, —>0

4 Y
0—>K,—>M,/aM,—*>M,/aM—>0

A

0 0 0
where K,=Ker ¢, K,=Ker  are A-modules. Hence we have
Ly(M,)=L  (aM,)+ L,(M,/aM,)
=LK,)+ L,aM;)+ L ,K,)+ L, M,/aM,)
=LB(M1)+LB(M3)'

Theorem 1.2. Let R be noetherian. Then any additive function Ly
over R can be extended to an additive function Ly, over the polynomial
ring R[x] over R with one valuable z, i.e. there exists an additive function
L.y over Rlx] such that

LR(M) = LR[z](MC?R[x])

for any M e C(R).
Proof. The following definition of Lg,; is as in [4, p. 407]. Let K,
be a Koszul complex

oo 0—>R[2]—2> R[#]—>0—> - - -.

Put K(x, N)=K, (>[§]N for any N € C(R[x]). We define, for any N e C(R[x]),
R[]

L g (N)=X(H(K(x, N))) where the right hand side is the Euler character-

istic of the Koszul complex K(z, N) [cf. 8], i.e.
Lry(N)=La(N [ 2N) = L((0: %)y).

Then Lg,, is an additive function over R[x]. If M e(C(R), then Ly ,,(M

Q;)R[x])=LR(M) since (0: x) in M@R[x] is zero.

Note that L, can be extended to Ly, ...,,,; by induction on .

2. Trivial additive functions. Let R be an integral domain and ¢
any integer. The function ¢ rank, M is obviously an additive function
over R. Additive function of this type will be called trivial.

Theorem 2.1. If R is a regular local ring, any additive function over
R is trivial and moreover L(M)=L(R) rank, M for M e C(R).

To prove this, we use the following lemma.

Lemma 2.2. If M e C(R) has a finite free resolution and if there is a

non zero-devisor s of R such that sM=0, then L(M)=0 for any additive
function L over R.
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Proof. Let

0—>F,—>F, —> . - —>F——>F—>M—>0

be a free resolution of M. From this exact sequence we have
L(M)=L({F)—LF)+ - - - +(=1)*L(F,)
by the additivity of L. Let S be the set of all non zero-divisors of R.
The hypothesis sM =0 implies that the sequence
0—>S'Fyr. . . —>S'F—>0

is exact. Hence > i ,(—1)'rank F';=0. Since L(F,)=L(R)rank F,, we
have L(M)=0.

Since, for an R-sequence z,, - - -, 2,, the Koszul complex K(R,,....,;) is
a free resolution of R/(x,, - - -, 2,)R, we have:

Corollary 2.3. Let x,, ---, 2, be an R-sequence, t=1. Then we have
L(R/(xy, -+, 2,)R)=0 for any additive function L over R.

Proof of Theorem 2.1. Let N, be submodules of M such that

M=N,ON,D---DN,=0 and

N,/N,,=R/P,
where P, € Spec R for all 7, 0<i{<t—1. Then we have L(M)=3:-} L(R/P,)
by the additivity of L. If P,=0, then we have L(R/P,)=0 by Lemma 2.2.
Let m be the number of modules N,/N,,, with the property that N,/N,.,
=~R in the system {N,/N,,};,.....-;. Then m=rank, M since rank, M is
the dimension of S-'M over K=S-'R, where S=R—{0}.

Remark. This result is proved by the fact that the Grothendieck
group K, (R) is isomorphic to Z.

Theorem 2.4. Let (R, m,, ---,m,) be a semi-local ring of dimension
2. If R is o unique factorization domain, any additive function over R is
trivial and L(M)=L(R) rank, M for M e C(R).

For the proof, we use the following lemma.

Lemma 2.5. Let (R, my, ---,m,) be a semi-local ring of dim R =1.
Then we have L(R/m,)=0 for any m, with ht m,=1 and for any additive
function L over R.

Proof. Let Pe Spec R with ht m/P=1land zem,— ;.. m,UP). We
have an exact sequence

0—>R/P-2>R/P—>R/(P, )—>0.
From this exact sequence, we have L(R/(P,x))=0. Since (P,x) is m,-
primary, there are submodules N, of R/(P, z) such that
R/(P,z)=N,DN,D.--DN,=0

with N,/N,,;~R/m, for all 7, 0<j<t—1. Thisimplies that 0=L(R/(p, %))
=tL(R/m,), hence L(R/m,)=0.

Proof of Theorem 2.4. Let P be a prime ideal of height 1. Since R
is a U.F.D., P is principal, say P=(x). The exact sequence

0—>R-">R— >R/P—>0
implies L(R/P)=0, for any additive function L. Lemma 2.5 and this fact
imply the desired result in the same way as in [6].
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Proposition 2.6. Any additive function over a polynomial ring R
=kl[x,, - - -, 2,] over a field k is trivial.

The proof is the same as in Theorem 2.1.

The following result was suggested by K. Hirata.

Theorem 2.7. Let R be a noetherian integral domain, then the ad-
ditive function Lg,; constructed in Theorem 1.2 is trivial if Ly is trivial.

Proof. It suffices to prove that L,(A/P)=0 for any non-zero prime
ideal P of A where A=R[x]. Let PeSpecA and P+£0. If P>x, put
M=A/P. Then we have xM=0, and hence M/aM=M and (0: x),=M.
This implies L,(M)=0. If Pzx, put M=A/P. Then we have M/aM
=A/(P,z) and (0: 2),=0. If we put a=RN(P,x), then a+0. Since
A/(P, x) is isomorphic to B/a as R-module, we have L,(M)=L,(R/a)=0.

3. Non-trivial additive functions. We cite the following result of
S. Kondo (unpublished).

Theorem 3.1. Let R be a Dedekind domain, K, the reduced group of
the Grothendieck group of C(R). Then the following conditions (i), (ii) are
equivalent.

(i) Awny additive function over R is trivial.

(i) Hom (K, Z)=0.

Now it is known that K, is isomorphic to the ideal class group of R,
and that there exists R such that this group is isomorphic to any given
abelian group. This means that (ii) does not hold in general, i.e. non-
trivial additive functions exist over certain Dedekind domains. Theorem
3.1 holds for any integral domain R but it is unknown to the author
whether non-trivial additive function exists in other case.
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