65. A Construction of Lie Algebras and Lie Superalgebras by Freudenthal-Kantor Triple Systems. I

By Yoshiaki Kakilchi
Department of Mathematics, Faculty of Engineering, Toyo University

(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1985)

1. Introduction. In our previous paper [3], we showed that from a two-dimensional associative triple system W and any generalized Jordan triple system $U(-1,1)$ of second order (due to I. L. Kantor [4]) we can make a generalized Jordan triple system $W \otimes U(-1,1)$ of second order which induces the Lie triple system, and that we have a Lie algebra as a standard embedding of the Lie triple system. In this paper, it is shown that Lie algebras and Lie superalgebras can be also constructed by Freudenthal-Kantor triple system $U(\varepsilon, \delta)(\varepsilon= \pm 1, \delta= \pm 1)$ which becomes a generalized Jordan triple system of second order in case $\varepsilon=-1, \delta=1$. We can make, namely, from the same associative triple system W as in [3] and any Freudenthal-Kantor triple system $U(\varepsilon, \delta)$ a Freudenthal-Kantor triple system $W \otimes U(\varepsilon, \delta)$ to which we can associate a Lie algebra and a Lie superalgebra as a standard embedding of a Lie triple system $W \otimes U(\varepsilon, \delta) \oplus$ $\overline{W \otimes U(\varepsilon, \delta)}$, where $\overline{W \otimes U(\varepsilon, \delta)}$ is an isomorphic copy of $W \otimes U(\varepsilon, \delta)$. We assume that any vector space considered in this paper is finite-dimensional and the characteristic of the base field Φ is different from 2 or 3 . The author wishes to express his hearty thanks to Prof. K. Yamaguti for his kind advice and encouragement.
2. A triple system A with a trilinear product $\{a b c\}$ is called an associative triple system (ATS) if $\{a b\{c d e\}\}=\{a\{b c d\} e\}=\{\{a b c\} d e\}=\{a\{d c b\} e\}$ for all elements $a, b, c, d, e \in A$ [6].

Let W be a two-dimensional triple system which has a basis $\left\{e_{1}, e_{2}\right\}$ such that

$$
\begin{align*}
& \left\{e_{1} e_{1} e_{1}\right\}=\alpha e_{1}, \quad\left\{e_{1} e_{1} e_{2}\right\}=\left\{e_{1} e_{2} e_{1}\right\}=\left\{e_{2} e_{1} e_{1}\right\}=\alpha e_{2}, \tag{1}\\
& \left\{e_{1} e_{2} e_{2}\right\}=\left\{e_{2} e_{1} e_{2}\right\}=\left\{e_{2} e_{2} e_{1}\right\}=\beta e_{1}, \quad\left\{e_{2} e_{2} e_{2}\right\}=\beta e_{2},
\end{align*}
$$

where $\alpha, \beta \in \Phi$. Then W is a commutative ATS and is also a Jordan triple system.

In the ATS W, we have

$$
\begin{equation*}
l(a, b) l(c, d)=l(c, d) l(a, b) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
l(a, b) l(c, d)=l(l(a, b) c, d)=l(c, l(b, a) d) \tag{3}
\end{equation*}
$$ where $l(a, b) c=\{a b c\}$, for $a, b, c, d \in W$.

A Freudenthal-Kantor triple system (FSK) $U(\varepsilon, \delta)$ is a vector space with a triple product $\{x y z\}$ satisfying

$$
\begin{equation*}
[L(x, y), L(u, v)]=L(L(x, y) u, v)+\varepsilon L(u, L(y, x) v) \tag{4}
\end{equation*}
$$

(5)

$$
K(K(x, y) u, v)=L(v, u) K(x, y)-\varepsilon K(x, y) L(u, v),
$$

where $L(x, y) u=\{x y u\}$ and $K(x, y) u=\{x u y\}-\delta\{y u x\}$ for $x, y, u, v \in U(\varepsilon, \delta)$, $\varepsilon= \pm 1, \delta= \pm 1$.

Using (2) and (3), we have
Proposition. For the ATS W and any $F K S U(\varepsilon, \delta)$, define a trilinear product in $W \otimes U(\varepsilon, \delta)$ by $\{a \otimes x b \otimes y c \otimes z\}=\{a b c\} \otimes\{x y z\}$ for $a, b, c \in W$, $x, y, z \in U(\varepsilon, \delta)$. Then $W \otimes U(\varepsilon, \delta)$ becomes an $F K S$ and $K(a \otimes x, b \otimes y)=$ $l(a, b) \otimes K(x, y)$.

Corollary. If $U(\varepsilon, \delta)$ is a Jordan triple system (or an anti-Jordan triple system), then so is $W \otimes U(\varepsilon, \delta)$.

A triple system $T(\delta)$ with product $[a b c], \delta= \pm 1$, is called a Lie triple system (LTS) if it satisfies the following identities for any elements $x, y, z, u, v \in T(\delta)$ ([9])
(i) $[x y z]=-\delta[y x z]$,
(ii) $[x y z]+[y z x]+[z x y]=0$,
(iii) $[x y[u v z]]=[[x y u] v z]+[u[x y v] z]+[u v[x y z]]$.

When $\delta=1, T(1)$ is an ordinary Lie triple system [5] and when $\delta=-1$, $T(-1)$ is an anti-Lie triple system [2].

For the FKS $W \otimes U(\varepsilon, \delta)$, we consider a vector space direct sum $W \otimes U(\varepsilon, \delta) \oplus \overline{W \otimes U(\varepsilon, \delta)}$, where $\overline{W \otimes U(\varepsilon, \delta)}$ is an isomorphic copy of $W \otimes$ $U(\varepsilon, \delta)$, of which element is denoted by a finite sum of the matrix form $\binom{a \otimes x}{b \otimes y}$ and defined a triple product on it by

$$
\begin{equation*}
\left[\binom{a_{1} \otimes x_{1}}{a_{2} \otimes x_{2}}\binom{b_{1} \otimes y_{1}}{b_{2} \otimes y_{2}}\binom{c_{1} \otimes z_{1}}{c_{2} \otimes z_{2}}\right]:=L\left(\binom{a_{1} \otimes x_{1}}{a_{2} \otimes x_{2}}, \quad\binom{b_{1} \otimes y_{1}}{b_{2} \otimes y_{2}}\right)\binom{c_{1} \otimes z_{1}}{c_{2} \otimes z_{2}} \tag{6}
\end{equation*}
$$

$$
\left.\begin{array}{rl}
:=\binom{\left\{a_{1} \otimes x_{1} b_{2} \otimes y_{2} c_{1} \otimes z_{1}\right\}-\delta\left\{b_{1} \otimes y_{1} a_{2} \otimes x_{2} c_{1} \otimes z_{1}\right\}+\delta K\left(a_{1} \otimes x_{1}, b_{1} \otimes y_{1}\right) c_{2} \otimes z_{2}}{\varepsilon\left\{b_{2} \otimes y_{2} a_{1} \otimes x_{1} c_{2} \otimes z_{2}\right\}-\varepsilon \delta\left\{a_{2} \otimes x_{2} b_{1} \otimes y_{1} c_{2} \otimes z_{2}\right\}-\varepsilon K\left(a_{2} \otimes x_{2}, b_{2} \otimes y_{2}\right) c_{1} \otimes z_{1}} \\
=\left(\begin{array}{ll}
l\left(a_{1}, b_{2}\right) \otimes L\left(x_{1},, y_{2}\right)-\delta l\left(b_{1}, a_{2}\right) \otimes L\left(y_{1}, x_{2}\right) & \delta l\left(a_{1}, b_{1}\right) \otimes K\left(x_{1}, y_{1}\right) \\
-\varepsilon l\left(a_{2}, b_{2}\right) \otimes K\left(x_{2}, y_{2}\right) & \varepsilon l\left(b_{2}, a_{1}\right) \otimes L\left(y_{2}, x_{1}\right)-\varepsilon \delta l\left(a_{2}, b_{1}\right) \otimes L\left(x_{2}, y_{1}\right)
\end{array}\right),
\end{array} c_{2} \otimes z_{2}\right), ~ \$
$$

then $W \otimes U(\varepsilon, \delta) \oplus \bar{W} \otimes U(\varepsilon, \delta)$ becomes an LTS with respect to this product (cf. [9]).

Hence we have the following
Theorem 1. Let W be the ATS as above and $U(\varepsilon, \delta)$ be an $F K S$. Then, from an $F K S W \otimes U(\varepsilon, \delta)$ we obtain an $L T S W \otimes U(\varepsilon, \delta) \oplus \overline{W \otimes U(\varepsilon, \delta)}$ which induces the standard embedding Lie algebra $(\delta=1)$ and Lie superalgebra ($\delta=-1$)

$$
\circledast(\varepsilon(\varepsilon, \delta)=\mathscr{D} \oplus W \otimes U(\varepsilon, \delta) \oplus \overline{W \otimes U(\varepsilon, \delta)},
$$

where \mathscr{D} is the Lie algebra of inner derivations in the LTS $W \otimes U(\varepsilon, \delta) \oplus$ $\overline{W \otimes U(\varepsilon, \delta)}$.

Put $\mathscr{G}=V_{0} \oplus V_{1}$, where $V_{0}=\mathscr{D}, V_{1}=W \otimes U(\varepsilon, \delta) \oplus \overline{W \otimes U(\varepsilon, \delta)}$, then we have $\left[V_{0}, V_{0}\right] \subset V_{0},\left[V_{0}, V_{1}\right] \subset V_{1},\left[V_{1}, V_{1}\right] \subset V_{0}$.

More precisely, let
\oiint_{-2} be the vector space spanned by derivations $L\left(\binom{a \otimes x}{0},\binom{b \otimes y}{0}\right)$,
\mathscr{G}_{0} be the vector space spanned by derivations $L\left(\binom{a \otimes x}{0},\binom{0}{b \otimes y}\right)$,
\mathscr{G}_{2} be the vector space spanned by derivations $L\left(\binom{0}{a \otimes x},\binom{0}{b \otimes y}\right)$,
$\mathscr{G}_{-1}=W \otimes U(\varepsilon, \delta) \quad$ and $\left.\mathscr{F}_{+1}=\overline{W \otimes U(\varepsilon, \delta)}\right)$,
where $a, b \in W$ and $x, y \in U(\varepsilon, \delta)$. Then $V_{0}=\mathscr{S}_{-2} \oplus \mathscr{G}_{0} \oplus \mathscr{G}_{2}, V_{1}=\mathscr{G}_{-1} \oplus \mathscr{G}_{1}$.
By straightforward calculations we have
Theorem 2. The Lie algebra or Lie superalgebra obtained in Theorem 1 is the graded Lie algebra or Lie superalgebra of second order such that

$$
\mathfrak{G}(\varepsilon, \delta)=\mathscr{G}_{-2} \oplus \mathscr{S}_{-1} \oplus \mathscr{G}_{0} \oplus \mathscr{G}_{1} \oplus \mathscr{G}_{2},
$$

$\left[\mathscr{G}_{\imath}, \mathscr{S}_{\}}\right] \subset \mathscr{S}_{i+j}$ for $i, j=0, \pm 1$ and ± 2 (it being understood that $\mathscr{G}_{\imath+j}=0$ if $i+j$ is different from $0, \pm 1$ and ± 2) (cf. [8]).
3. Example. The complex number field C becomes an $\operatorname{FKS} U(-1,1)$ relative to the product $\{x y z\}=x(\bar{y} z)+(\bar{y} x)-y(\bar{x} z)$ (cf. [1, 4]). By direct calculations, we see that $\operatorname{dim} \mathscr{S}_{-2}=\operatorname{dim} \mathscr{G}_{2}=\operatorname{dim} \mathscr{G}_{0}=2$ and $\operatorname{dim} \mathscr{G}_{-1}=\operatorname{dim} \mathscr{G}_{1}$ $=4$, and LTS $W \otimes C \oplus \overline{W \otimes C}$ is simple. Hence $\operatorname{dim} \mathfrak{G}(W, C)=14$ and $\mathscr{G}(W, C)$ is of type G_{2}.

Remark. K. Yamaguti has defined a bilinear form γ on an FKS $U(\varepsilon, \delta)$ by $\gamma(x, y)=(1 / 2) S p[(\delta+1)(R(x, y)-\varepsilon R(y, x))+\varepsilon \delta L(x, y)-L(y, x)]$ where $R(x, y) z=\{z x y\}$ ([8]). Using this definition, we obtain the bilinear forms γ_{W} and γ_{1} on W and $W \otimes U(\varepsilon, \delta)$ as follows : $\gamma_{W}(a, b)=\operatorname{Spl}(a, b)$ and $\gamma_{1}(a \otimes x$, $b \otimes y)=\gamma_{w}(a, b) \gamma(x, y)$ respectively. And also T. S. Ravisankar has defined the Killing form on LTS by

$$
\kappa(x, y)=(1 / 2) S p[R(x, y)+R(y, x)],
$$

where $R(x, y) z=[z x y][7]$. Using this definition, we have the Killing form κ on LTS $W \otimes U(\varepsilon, \delta) \oplus \bar{W} \otimes U(\varepsilon, \delta)$ as follows :

$$
\kappa\left(\binom{a_{1} \otimes x_{1}}{a_{2} \otimes x_{2}},\binom{b_{1} \otimes y_{1}}{b_{2} \otimes y_{2}}\right)=\gamma_{w}\left(a_{1}, b_{2}\right) r\left(x_{1}, y_{2}\right)+\gamma_{w}\left(a_{2}, b_{1}\right) r\left(x_{2}, y_{1}\right) .
$$

References

[1] B. N. Allison: A class of nonassociative algebras with involution containing the class of Jordan algebras. Math. Ann., 237, 133-156 (1978).
[2] J. R. Faulkner and J. C. Ferrar: Simple anti-Jordan pairs. Comm. Algebra, 8, 993-1013 (1980).
[3] Y. Kakiichi: Another construction of Lie algebras by generalized Jordan triple systems of second order. Proc. Japan Acad., 57A, 194-198 (1981).
[4] I. L. Kantor: Models of exceptional Lie algebras. Soviet Math. Dokl., 14, 254-258 (1973).
[5] W. G. Lister: A structure theory of Lie triple systems. Trans. Amer. Math. Soc., 72, 217-242 (1952).
[6] O. Loos: Assoziative Tripelsysteme. Manuscripta Math., 7, 103-112 (1972).
[7] T. S. Ravisankar: Some remarks on Lie triple systems. Kumamoto J. Sci., 11, 1-8 (1974).
[8] K. Yamaguti: On the metasymplectic geometry and triple systems. Kôkyûroku RIMS, Kyoto Univ., no. 308, pp. 55-92 (1977) (in Japanese).
[9] K. Yamaguti and A. Ono: On representations of Freudenthal-Kantor triple systems $U(\varepsilon, \delta)$. Bull. Fac. Sch. Educ. Hiroshima Univ., part II, 7, 43-51 (1984).

