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Let G be a reductive algebraic group over a local (or a finite) field and
g its Lie algebra. A regular nilpotent element of g gives canonically a
non-degenerate character of a maximal unipotent subgroup.. The repre-
sentation of G induced rom such a character is called a Gelfand-Graev
representation, and it is multiplicity ree if G is quasi-split. N. Kawanaka
[3] generalized this construction using Dynkin’s theory on nilpotent Ad (G)-
orbits, and associated to every nilpotent orbit an induced representation
called generalized Gelfand-Graev representation. (GGGR). In [3], the
GGGRs of finite reductive groups were studied in detail.

1. Definition of GGGRs. Let G--KAN be an Iwasawa decompo-
sition of a connected semisimple Lie group G with finite center, and
aa the corresponding decomposition of its Lie algebra g. Denote by
W the Weyl group of (g, a). Choose a positive system A of the root system
A of (, a) so that n=,ea/ g, where denotes the root space of 2. Let U
be the maximal unipotent subgroup with Lie algebra u=],ea/ _,.

For a C-manifold 9 and a Fr6chet space E, let C(f), E) (resp.
C(9, E)) denote the space of E-valued smooth functions on 9 (resp. those
with compact supports) equipped with the Schwartz topology. Let V be
a closed subgroup of G and 2 a smooth representation (see e. g. [4, p. 254])
of V on a Fr6chet space E. The left translation defines a smooth repre-
sentation of G on the space C(G, E)of f in C(G, E) satisfying f(gv)
=(v)-f(g) (g e G, v e V), which is equipped with the topology inherited
from that of C(G, E).

For a non-zero nilpotent element X e g, by Jacobson-Morozov theorem,
there exists an L.-triplet {X, H, Y}g containing X" [H, X]=2X, [H, Y]
----2Y, [X, Y]=H. By taking a suitable Ad (G)-conjugate of X, we may
assume that --H is dominant in a. Since -2(H)=0, 1 or 2 for any simple
root , we get a gradation g=zg(i) by ad (H). For i__>l, u(i)= g(k)
is a Lie subalgebra of u. Since g(i) and (]) are orthogona! with respect
to the. Killing form B of g if i+]=/=O, there exists a subalgebra u(1.5)of
(1) which has following two properties" (i)u(2)__cu(1.5) and 2 dim u(1.5)
dim u(1)+ dim u(2), (ii) B(Y, [u(1.5), u(1.5)]) (0). Then we can define

unitary character ]x of U(1.5)=exp u(1.5) by ,]x(exp Z)=exp/--i-B(Y, Z)
for Z e u(1.5).

Definition. For a non-zero nilpotent element X e S, the smooth repre-
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sentation (, C(G, C)) is called a generalized Gelfand-Graev represen-
tation (GGGR) associated to X.

The group U(1.5) is not uniquely determined in general. Nevertheless
we call every representation as above a GGGR.

Take a subset F of the set//of simple roots in A/. Let P--MAN
(A=A,N=N) be a Langlands decomposition of the standard parabolic
subgroup. P corresponding to F, where F generates the restricted root
system of M. Let U be the connected subgroup of U opposite to N
and U(F)--- U M.

For a smooth representation (a, E) of Mr and, e (a)c*, the complexi-
fled dual space of a-Lie(A), =a(R)e/(R)(l) defines a smooth repre-
sentation of P, where p(Z) 2-tr (ad (Z) Ia) for Z e a. Put (,, H,)
----(, CT(G, E)). In the following, we treat the spaces Hom (,, )of
continuous intertwining operators from the principal series represen-
tations , to the GGGRs for various (F, ) and X.

2. Uniqueness of intertwining operators. We estimate dim Hom (,,
) using Bruhat’s method. Let ] be a character of a closed subgroup U’
of U. We put

Wh (H,) {T e H,; (T, ,(u)f (u)(T, f) for u e V’, f e H,},
where E" denotes the dual space of a topological vector space E and (, }
the canonical inner product of E" and E. Each element in Wh (H,)is
called a Whittaker vector of type (U’, ]).

Let ,, be the space of E-distributions T on G satisfying
(2.1) (T, LR_,)---(T, (u)a’-a(m))(u e U’, p=man e MANr)
for e C$(G, E), where L(x)=(y-’x), R(x)--(xy) (x, y e G).

For an s e W, take a representative s* of s in K and put G-Us*P.
Then G= [e/G (Bruhat decomposition), where W denotes the sub-
group of W generated by reflections corresponding to elements of F. Let
9 be the union of G with G, of strictly larger dimension. Then 9 is an
open subset of G and G is a closed submanifold of tg. Let ff.... denote
the space of E-distributions T on 9 which satisfy the condition (2.1) for
e C(t, E) and have supports contained in G.

Proposition 1. It holds that Hom (,, ) Wh (H,) ff.... (as
vector spaces), and dim,,,e/dim ff....

Now we assume that 2 be a character of U, for some F’ll. Sug-
gested by Prop,. 1, we study the spaces .... We estimate the support of
T e .... as follows.

Theorem 2. Assume that a is finite dimensional. For every s in W,
a distribution in .... has always its support cont,ained in DU,s*P,
where D (y e U(F’) s* Us*-’ 1Uy, ys*P(ys*)-- 1}.

We apply Th 2 to ]--x. For linear groups G we can show that D

= if F-F’ and s e W. So we get the following theorem on a uniqueness
property of Whittaker vectors for GGGRs.

Theorem :. Assume that G be a linear group. Let X be a non-zero
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nilpotent element with U(1.5)=U. for some F’=II. For a finite dimen-
sional representation (a, E) of M and e (a), one has

( ) Hom (zr.,. ,)--(0) if Ad (G)Y (q --,
(ii) dimHom(.,.)_dimE, if F=F’ =O if FF’.
Remark. The assumption "U(1.5)=U. for some F’II" for X is

satisfied for any even nilpotent element X, and also. for any nilpotent X if
g is a complex simple Lie algebra of type A.

3 Whittaker integrals and intertwining operators. We construct
Whittaker vectors for GGGRs through Whittaker integrals and their
analytic continuation. Suggested by Casselman’s subrepresentation theo-
rem, we consider the representations , induced from the minimal para-
bolic subgroup P-MAN. Let (a, E) be an irreducible finite dimensional
representation of M and eac*. For an s e W, put U--U fq s*-’Ns*. Then
{U, s e W}={U F=II}. For a unitary character r of U,, we introduce
a Whittaker integral

, )f(g)-f (e", f(gu))](u)du (g e G, f e H,)(3.1)
Us

for e" e E\(0), where du denotes a Haar measure on U,.
Define an open eonvex tubular domain D, in a by D, {u e ac* (Re u, a)

>0 for a e ((s))}, where ((s)) denotes the set of positive roots a such that
sa< 0. The following proposition is a slight generalization of [1, Prop. 2.4].

Proposition 4. The integral (3.1) is absolutely eo.nvergent for u e D,.
Moreover W’"(a, v, Of(g) is smooth in g e G and holomorphic with respect
to e D,. The map f-W"(a, , )f gives a non-zero, intertwining operator
from H, to C(G, C).

To construct intertwining operators for general e *ac, we consider
analytic continuation of Whittaker integrals and examine it in detail.
From now on, we assume that G is defined over C for a technical reason.
For w e W such U= U, put W’,=W(,) with F(r, w)={ e// ((sw-}}
lexp (__,a):/=l}. Combining Jacquet’s result [2, p. 277] with the analytic
continuation of intertwining operators between two principal series repre-
sentations, we get the following

Proposition 5. Let w be as above and assume that ! U=I. Then
-1We"(a, , )f(g) extends to a meromorphic function of in w [W,,D,_,]

for every K-finite vector f e H.,, where [o] denotes the convex hull of a set

In case =x, we examine the existence of w e W satisfying the as-
sumption of Prop. 5 and [W’,wDw-,]=a and prove it for certain nilpotent
elements including all for type A as follows.

Theorem 6. Let= be the direct sum decomposition of a com-
plex semisimple Lie algebra into simple ideals . For Z e , write
Z=,.,Z with Ze . Let Xo be a non-zero nilpotent element in (11)
=aen-a such that Xg is even unless is of type A. Then there exists
a w e W such that X=Ad (w*)Xo satisfies the following conditions. (i)
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There exists a subset F(X) of 11 such that U(1.5) can be taken as Uy(x).
(ii) The function We"(a, , x)f(g) extends to a meromorphie function of
on the whole a for every K-finite vector f in H....

This theorem generalizes, in complex case, Jacquet’s result [2, p. 280]
or regular nilpotent elements, and assures the existence of infinitesimal
Whittaker vectors for general eac*.

In case of type A, the Whittaker integral extends meromorphically
to the whole a for every X by Th. 6.

Example (g of rank 2). We can take U(1.5) as U, for every X. Using
Prop. 5, we can show that W’"(a, , x)f(g) extends to a meromorphic func-
tion on a except only one. case for type G.. In this exceptional case, the
weighted Dynkin diagram of the. orbit is given as 0 2, and it never
intersects g(//). The Whittaker integral extends meromorphically to a
half space by Prop.. 5, but we don’t know if it extends meromorphically to
a larger domain or not.

The author expresses his hearty thanks to Professor T. Hirai for his
valuable advice and constant encouragement.
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