44. The Riemann-Roch Theorem and Bernoulli Polynomials

By Tetsuya Ando
Department of Mathematics, Faculty of Science, University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., June 11, 1985)

0. Introduction. Let X be a non-singular algebraic variety with $\operatorname{dim} X=N$ over an algebraically closed field. In this paper we shall prove the following formula

$$
\chi\left(t K_{X}\right)=\sum_{r=0}^{[N / 2]} \frac{\phi_{N-2 r}(t)}{(N-2 r)!} K_{X}^{N-2 r} R_{r} .
$$

Here the $\phi_{n}(t)$ denote the Bernoulli polynomials, defined by

$$
\frac{x e^{t x}}{e^{x}-1}=\sum_{n} \frac{\phi_{n}(t)}{n!} x^{n},
$$

$R_{n}=R_{n}\left(c_{1}, \cdots, c_{2 n}\right)$ is a polynomial of Chern classes, defined by

$$
T_{2 n+1}\left(c_{1}, \cdots, c_{2 n}\right)=(1 / 2) c_{1} R_{n}\left(c_{1}, \cdots, c_{2 n}\right)
$$

where T_{r} is the r-th todd class of X.

1. Preliminaries. We start by recalling the following elementary facts.

Lemma 1.

$$
\begin{gather*}
\phi_{0}(t)=1, \quad \phi_{1}(t)=t-(1 / 2) . \tag{1-1}\\
(d / d t) \phi_{n}(t)=n \cdot \phi_{n-1}(t) . \tag{1-2}\\
\phi_{2 n+1}(0)=\phi_{2 n+1}(1 / 2)=0 \quad \text { for } n \geqq 1 . \tag{1-3}\\
\phi_{n}(t+1)-\phi_{n}(t)=n t^{n-1} . \tag{1-4}\\
\phi_{n}(t)=\sum_{r=0}^{n}\binom{n}{r} \phi_{r}(0) t^{n-r}, \quad \phi_{2 n}(t)=\sum_{r=0}^{m}\binom{2 m}{2 r} \phi_{2 r}(0) t^{2 m-2 r}-m t^{2 m-1} . \tag{1-5}\\
\sum_{r=0}^{m}\binom{2 m}{2 r} \frac{2^{2 r} \phi_{2 r}(0)}{2 m-2 r+1}=1 . \tag{1-6}
\end{gather*}
$$

Proof. We only prove (1-6). From (1-5) we have

$$
\frac{\phi_{2 m+1}(t)}{2 m+1}=\sum_{r=0}^{m}\binom{2 m}{2 r} \frac{\phi_{2 r}(0)}{2 m-2 r+1} t^{2 m-2 r+1}-\frac{1}{2} t^{2 m} .
$$

Put $t=1 / 2$. Then

$$
0=\sum_{r=0}^{m}\binom{2 m}{2 r} \frac{\phi_{2 r}(0)}{2 m-2 r+1} \cdot \frac{1}{2^{2 m-2 r+1}}-\frac{1}{2^{2 m+1}} .
$$

From this (1-6) follows.
Q.E.D.

We define the symbols $c_{1}, \cdots, c_{N} ; p_{1}, \cdots, p_{N} ; z_{1}, \cdots, z_{N} ; x_{1}, \cdots, x_{N}$; and polynomials $A_{i}\left(p_{1}, \cdots, p_{i}\right), T_{i}\left(c_{1}, \cdots, c_{i}\right)(0 \leqq i \leqq N)$ and $R_{j}\left(c_{1}, \cdots, c_{2 j}\right)(0 \leqq j$ $\leqq[N / 2]$) as follows:

$$
\begin{equation*}
z_{i}=x_{i}^{2} \quad \text { for } 1 \leqq i \leqq N . \tag{1}
\end{equation*}
$$

(2) p_{i} is the i-th elementary symmetric function of x_{1}, \cdots, x_{N}.
(3) c_{i} is the i-th elementary symmetric function of z_{3}, \cdots, z_{N}.

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{2 x_{i} T}{\sinh 2 x_{i} T}=\sum_{i=0}^{N} A_{i}\left(p_{1}, \cdots, p_{i}\right) \cdot T^{i} \quad\left(\bmod T^{N+1}\right) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{z_{i} T}{1-\exp \left(-z_{i} T\right)}=\sum_{i=0}^{N} T_{i}\left(c_{1}, \cdots, c_{i}\right) \cdot T^{i} \quad\left(\bmod T^{N+1}\right) . \tag{5}
\end{equation*}
$$

(6) $\quad T_{2 j+1}\left(c_{1}, \cdots, c_{2 j}\right)=(1 / 2) c_{1} R_{j}\left(c_{1}, \cdots, c_{2 j}\right)$.

From these

$$
\begin{aligned}
A_{1}= & -(2 / 3) p_{1}, \quad A_{2}=(2 / 45)\left(-4 p_{2}+7 p_{1}^{2}\right), \\
A_{3}= & (-4 / 945)\left(16 p_{3}-44 p_{2} p_{1}+31 p_{1}^{3}\right), \quad \cdots ; \\
T_{1}= & (1 / 2) c_{1}, \quad T_{2}=(1 / 12)\left(c_{2}+c_{1}^{2}\right), \quad T_{3}=(1 / 24) c_{2} c_{1} . \\
R_{0}= & 1, \quad R_{1}=(1 / 12) c_{2}, \quad R_{2}=(1 / 720)\left(-c_{1}^{2} c_{2}+c_{1} c_{3}-c_{4}+3 c_{2}^{2}\right), \\
R_{3}= & (1 / 60480)\left(2 c_{1}^{4} c_{2}+2 c_{1}^{2} c_{4}-2 c_{1}^{3} c_{3}-10 c_{1}^{2} c_{2}^{2}+11 c_{1} c_{2} c_{3}-c_{3}^{2}-9 c_{2} c_{4}-2 c_{1} c_{5}\right. \\
& \left.+10 c_{2}^{3}+2 c_{6}\right), \\
R_{4}= & (1 / 3628800)\left(-3 c_{1}^{6} c_{2}+3 c_{1}^{5} c_{2}+21 c_{1}^{4} c_{2}^{2}-3 c_{1}^{4} c_{4}-29 c_{1}^{3} c_{2} c_{3}+3 c_{1}^{3} c_{5}\right. \\
& -42 c_{1}^{2} c_{2}^{3}+8 c_{1}^{2} c_{3}^{2}+26 c_{1}^{2} c_{2} c_{4}-3 c_{1}^{2} c_{6}+50 c_{1} c_{2}^{2} c_{3}-16 c_{1} c_{2} c_{5} \\
& \left.-13 c_{1} c_{3} c_{4}+3 c_{1} c_{7}+21 c_{2}^{4}-34 c_{2}^{2} c_{4}-8 c_{2} c_{3}^{2}+13 c_{2} c_{6}+3 c_{3} c_{5}+5 c_{4}^{2}-3 c_{8}\right) .
\end{aligned}
$$

Remark. If we regard c_{i} as the i-th chern class of X, then T_{r} represents the r-th Todd class of X.

Lemma 2.

$$
\begin{equation*}
T_{r}\left(c_{1}, \cdots, c_{r}\right)=\sum_{s=0}^{[r / 2]} \frac{1}{2^{4 s}(r-2 s)!}\left(\frac{1}{2} c_{1}\right)^{r-2 s} A_{s}\left(p_{1}, \cdots, p_{s}\right) \tag{7}
\end{equation*}
$$

Especially $T_{2 r+1}$ is a polynomial in $c_{1}, \cdots, c_{2 r}$ which can be devided by c_{1}.
Proof. See Todd [2].
Hence, from the definition of R_{r},

$$
\begin{equation*}
R_{r}\left(c_{1}, \cdots, c_{2 r}\right)=\sum_{s=0}^{r} \frac{1}{2^{4 s}(2 r-2 s+1)!}\left(\frac{1}{2} c_{1}\right)^{2 r-2 s} A_{s}\left(p_{1}, \cdots, p_{s}\right) \tag{8}
\end{equation*}
$$

2. Proof of the formula.

Lemma 3. $T_{M}=\sum_{r=0}^{[M / 2]} \frac{\phi_{M-2 r}(0)}{(M-2 r)!} K_{X}^{M-2 r} R_{r}$.
Proof. If M is odd, then $\phi_{M-2 r}(0)=0$ for $r<[M / 2]$. Thus

$$
\sum_{r=0}^{[M / 2]} \frac{\phi_{M-2 r}(0)}{(M-2 r)!} c_{1}^{M-2 r} R_{r}=\phi_{1}(0) K_{X} R_{[M / 2]}=\frac{1}{2} c_{1} R_{[M / 2]}=T_{M} .
$$

We assume that M is even, say $M=2 n$. Then we shall show

$$
T_{2 n}=\sum_{r=0}^{n} \frac{\phi_{2 n-2 r}(0)}{(2 n-2 r)!} c_{1}^{2 n-2 r} R_{r} .
$$

Actually, by (8), the right hand side is written as

$$
\begin{aligned}
\sum_{r=0}^{n} & \frac{\phi_{2 n-2 r}(0)}{(2 n-2 r)!} c_{1}^{2 n-2 r} R_{r} \\
& =\sum_{r=0}^{n} \frac{\phi_{2 n-2 r}(0)}{(2 n-2 r)!}\left(\frac{1}{2} c_{1}\right)^{2 n-2 r}\left\{\sum_{s=0}^{r} \frac{2^{2 n-2 r}}{2^{4 s}(2 r-2 s+1)!}\left(\frac{1}{2} c_{1}\right)^{2 r-2 s} A_{s}\right\} \\
& =\sum_{s=0}^{n}\left\{\sum_{r=s}^{n} \frac{2^{2 n-2 r} \phi_{2 n-2 r}(0)}{(2 n-2 r)!\cdot(2 r-2 s+1)!}\right\} \frac{1}{2^{4 s}}\left(\frac{1}{2} c_{1}\right)^{2 n-2 s} A_{s} \\
& =\sum_{s=0}^{n}\left\{\sum_{q=0}^{n-s} \frac{2^{2 q} \phi_{2 q}(0)}{(2 q)!\cdot(2 n-2 s-2 q+1)!}\right\} \frac{1}{2^{4 s}}\left(\frac{1}{2} c_{1}\right)^{2 n-2 s} A_{s} .
\end{aligned}
$$

Putting $m=n-s$, (1-6) yields

$$
\sum_{q=0}^{n-s} \frac{2^{2 q} \phi_{2 q}(0)}{(2 q)!(2 n-2 s-2 q+1)!}=\frac{1}{(2 n-2 s)!} .
$$

Hence the above sum is $T_{2 n}$ by (7).
Q.E.D.

Let

$$
\begin{equation*}
P(t):=\sum_{r=0}^{[N / 2]} \frac{\phi_{N-2 r}(t)}{(N-2 r)!} K_{X}^{N-2 r} R_{r} . \tag{*}
\end{equation*}
$$

If we substitute D / K_{X} for t in (*), then (*) can ke regarded as a polynomial in D, K_{X} and c_{1}, \cdots, c_{N}.

Theorem 4. Let X be a non-singular complete variety of dimension N, D a line bundle on X, c_{1}, \cdots, c_{N} chern classes of X, and let K_{X} be a canonical line bundle of X. Then

$$
\chi\left(\Theta_{X}(D)\right)=P\left(D / K_{X}\right) .
$$

Proof. By the Hirzebruch Riemann-Roch formula

$$
\chi\left(\mathcal{O}_{X}(D)\right)=\sum_{s=0}^{N} \frac{1}{s!} D^{s} T_{N-s} .
$$

On the other hand, the term of D^{s} of $P\left(D / K_{x}\right)$ is equal to a multiple of $\left(D / K_{X}\right)^{s}$ and of the coefficient of t^{s} in $P(t)$. Noting that

$$
\frac{\phi_{N-2 r}(t)}{(N-2 r)!}=\sum_{s=0}^{N-2 r} \frac{\phi_{N-2 r-s}(0)}{r!(N-2 r-s)!} t^{s},
$$

the term of D^{s} of $P\left(D / K_{X}\right)$ is
(**)

$$
\sum_{r=0}^{N} \frac{\phi_{N-2 r-s}(0)}{r!(N-2 r-s)!} K_{X}^{N-2 r-s} R_{r} D^{s} .
$$

By Lemma 3, (**) is equal to

$$
\sum_{s=0}^{N} \frac{1}{s!} D^{s} T_{N-s}
$$

This completes the proof.
Putting $D=t K_{X}$ we obtain the following formula stated in the Introduction:

$$
\chi\left(t K_{X}\right)=\sum_{r=0}^{[N / 2]} \frac{\phi_{N-2 r}(t)}{(N-2 r)!} K_{X}^{N-2 r} R_{r}
$$

References

[1] F. Hirzebruch and K. H. Mayer: Topological methods in algebraic geometry. Grundlehren 131, 3rd ed., Springer-Verlag, Heidelberg, ix +232 pp. (1966).
[2] J. A. Todd: The arithmetical invariants of algebraic loci. Proc. London Math. Soc., 43, 190-225 (1937).

