38. A Monotone Boundary Condition for a Domain with Many Tiny Spherical Holes

By Satoshi Kaizu
Department of Information Mathematics, University of Electro-Communications

(Communicated by Kôsaku Yosida, m. J. A., May 13, 1985)

1. Introduction. Let R^{N} be divided into an infinitely many number of cubes $C_{\varepsilon}^{i}, i \in N$, with volume of $(2 \varepsilon)^{N}$. Let $B^{i}\left(r_{\varepsilon}\right)$ be a closed ball of radius $r_{\varepsilon}(<\varepsilon)$ set in the center of C_{ε}^{i}, here $N \geqq 3$. Let Ω be a bounded domain with smooth boundary Γ. We denote by F_{ε} the union of all balls $B^{i}\left(r_{\varepsilon}\right)(\subset \Omega)$ such that dist $\left(B^{i}\left(r_{\varepsilon}\right), \Gamma\right) \geqq \varepsilon$. Let $\Omega_{\varepsilon}=\Omega \backslash F_{\varepsilon}$. Let ν be the outer unit normal of $\partial \Omega_{\varepsilon}$. For a positive number L_{ε} and a non-negative number c_{ε} we consider a monotone function β_{ε} defined by (i) $\beta_{\varepsilon}(r)=\left(r+c_{\varepsilon}\right) / L$ for $r \leqq-c_{\varepsilon}$, (ii) $\beta_{\varepsilon}(r)=0$ for $|r| \leqq c_{\varepsilon}$, (iii) $\beta_{\varepsilon}(r)=\left(r-c_{\varepsilon}\right) / L$ for $r \geqq c_{\varepsilon}$. In this paper we regard functions of $L^{2}\left(\Omega_{\varepsilon}\right)$ as functions of $L^{2}(\Omega)$ vanishing outside Ω_{ε}. For $f \in L^{2}(\Omega)$ we consider the boundary value problem:

$$
\begin{array}{cc}
-\Delta u_{\varepsilon}=f & \text { a.e. in } \Omega_{\varepsilon} \tag{1}\\
\frac{\partial u_{\varepsilon}}{\partial \nu}+\beta_{\varepsilon}\left(u_{\varepsilon}\right)=0 & \text { a.e. on } \partial \Omega_{\varepsilon}
\end{array}
$$

The problem admits a unique solution $u_{\varepsilon} \in H^{2}\left(\Omega_{\varepsilon}\right)$ (cf. [2]). We consider the behavior of u_{ε} under the condition

$$
\begin{equation*}
\sup L_{\varepsilon}<\infty, c_{\varepsilon} \rightarrow 0, r_{\varepsilon} \rightarrow 0 \quad \text { and } \quad n_{\varepsilon} \rightarrow \infty \tag{3}
\end{equation*}
$$

where n_{ε} is the number of holes of Ω_{ε}. Let $|\Omega|$ be the measure of Ω. In this paper the relation $n_{\varepsilon} \sim|\Omega| /(2 \varepsilon)^{N}$ as $\varepsilon \rightarrow 0$ is very often used. Let b be a multivalued monotone function defined by (iv) the domain $D(b)=\{0\}$, (v) $b(0)=\boldsymbol{R}$. Replacing (2) by $\partial u_{\varepsilon} / \partial \nu+b\left(u_{\varepsilon}\right) \ni 0$ we obtain the Dirichlet boundary value problem.

The behavior of the Laplacian on domains with many tiny spherical holes, concerning the Dirichlet boundary condition, has been studied by M. Kac [3], J. Rauch and M. Taylor [6], S. Ozawa [5], D. Cioranescu and F. Murat [1] and other authors. Among them we shall extend the result of Cioranescu and Murat to the direction of the monotone boundary condition (2). Intuitively we have $\beta_{\varepsilon} \rightarrow b$ as $L_{\varepsilon} \rightarrow 0$ and $c_{\varepsilon} \rightarrow 0$. Thus the above idea may be natural. For another extension see S. Kaizu [4].

Theorem. Let u_{ε} be the solution of (1), (2) and let $\tilde{u}_{\varepsilon} \in H^{1}(\Omega)$ be an extension of u_{ε} to be harmonic in F_{ε}. Take constants p, q such that $0 \leqq$ $p<\infty$ and $0 \leqq q \leqq \infty$. We assume that the parameters $r_{\varepsilon}, n_{\varepsilon}, c_{\varepsilon}$ and L_{ε} vary with (3) and
(4)

$$
\sup c_{\varepsilon} / r_{\varepsilon}<\infty, n_{\varepsilon} r_{\varepsilon}{ }^{N-2} \rightarrow p \quad \text { and } \quad L_{\varepsilon} / r_{\varepsilon} \rightarrow q .
$$

Then \tilde{u}_{ε} converges weakly in $H^{1}(\Omega)$ to the solution of

$$
\begin{gathered}
-\Delta u+\frac{(N-2) p\left|S_{N}\right| u}{(1+(N-2) q)|\Omega|}=f \quad \text { a.e. in } \Omega, \\
u=0 \quad \text { a.e. on } \Gamma,
\end{gathered}
$$

where S_{N} is the unit sphere of \boldsymbol{R}^{N} and $\left|S_{N}\right|$ is the $N-1$ dimensional measure of S_{N}. Here we use the convention $\infty^{-1}=0$.
2. Proof of Theorem. We assume that the parameters $\varepsilon_{m}, r_{m}, n_{m}, c_{m}$ and L_{m} satisfy (3), (4). We denote $u_{\varepsilon}, \Omega_{\varepsilon}$ and F_{ε} by u_{m}, Ω_{m} and F_{m}, respectively. Let $B_{m}=\cup\left\{B^{i}\left(\varepsilon_{m}\right): 1 \leqq i \leqq n_{m}\right\}$. We denote by M_{0}, M_{1}, \cdots generic constants independent of $\varepsilon_{m}, r_{m}, c_{m}$ and L_{m}. We use the following property of β_{m}.
(5)

$$
\left[L_{m} \beta_{m}(r)\right]^{2} \leqq L_{m} \beta_{m}(r) r \leqq r^{2}
$$

We denote by $\tilde{v} \in H^{1}(\Omega)$ the extension of $v \in H^{1}\left(\Omega_{m}\right)$ to be harmonic in F_{m}. By an inequality in Example 1 of [6] we can see that there exists a constant M_{0} such that
(6)

$$
\|\nabla \tilde{v}\|_{L^{2}(\Omega)^{N}} \leqq M_{0}\|\nabla v\|_{L^{2}\left(\Omega_{m}\right)^{N}}
$$

for all $v \in H^{1}\left(\Omega_{m}\right)$ and all m. The variational formulation of (1), (2) is written as follows:

$$
\begin{equation*}
\int_{\Omega_{m}} \nabla u_{m} \nabla v d x+\int_{\partial \Omega_{m}} \beta_{m}\left(u_{m}\right) v d \sigma=\int_{\Omega_{m}} f v d x \tag{7}
\end{equation*}
$$

for all $v \in H^{1}\left(\Omega_{m}\right)$, where $\beta_{m}=\beta_{\varepsilon_{m}}$. Putting $v=u_{m}$ into (7), using (5) we obtain
(8)

$$
\left\|\nabla u_{m}\right\|_{L^{2}\left(\Omega_{m}\right) N}^{2}+L_{m}^{-1}\left(\left\|U_{m}\right\|_{L^{2}\left(\partial \Omega_{m}\right)}^{2}+\left\|V_{m}\right\|_{L^{2}\left(\partial \Omega_{m}\right)}^{2}\right) \leqq M_{1}\left\|\tilde{u}_{m}\right\|_{L^{2}(\Omega)}
$$

with a certain constant M_{1}, where $U_{m}=0 \vee\left(u_{m}-c_{m}\right)$ and $V_{m}=0 \bigvee\left(-u_{m}-c_{m}\right)$; here $U_{m}, V_{m} \in H^{1}\left(\Omega_{m}\right)$. We write $\|v\|_{H^{1}(\Omega)}^{2}=\|\nabla v\|_{L^{2}(\Omega)^{N}}^{2}+\|v\|_{L^{2}(\Omega)}^{2}$. Using (6), (8) and the Poincaré inequality in $H^{1}(\Omega)$ we obtain
(10)

$$
\begin{gather*}
\sup _{m}\left\|\tilde{u}_{m}\right\|_{H^{1(\Omega)}}<\infty, \tag{9}\\
\sup _{m}\left(\left\|U_{m}\right\|_{L^{2}\left(\partial, \Omega_{m}\right)}^{2}+\left\|V_{m}\right\|_{L^{2}\left(\partial a_{m}\right)}\right) / L_{m}<\infty .
\end{gather*}
$$

Choose a subsequence still denoted by u_{m} such that $c_{m} \neq 0$ for all m and $\tilde{u}_{m} \rightarrow u$ weakly in $H^{1}(\Omega)$. Then $u \in H_{0}^{1}(\Omega)$ follows from (10). For the proof it suffices to show that u satisfies

$$
\begin{equation*}
\int_{\Omega}\left[\nabla u \nabla \zeta+\frac{(N-2) p\left|S_{N}\right| u \zeta}{(1+(N-2) q)|\Omega|}\right] d x=\int_{\Omega} f \zeta d x \tag{11}
\end{equation*}
$$

for all $\zeta \in C_{0}^{\infty}(\Omega)$. We shall modify Cioranescu and Murat's method applicable to our problem. We introduce $\left\{h_{m} \in W^{1, \infty}\left(\Omega_{m}\right)\right\}_{m}$ defined by (i) $h_{m}=1$ on $\Omega \backslash B_{m}$, (ii) $\Delta h_{m}=0$ on $B_{m} \backslash F_{m}$, (iii) $\partial h_{m} / \partial \nu+\beta_{m}\left(h_{m}\right)=0$ on ∂F_{m}. By direct calculations we see the concrete form of h_{m} on $B_{m} \backslash F_{m}$ (see Appendix). By this concrete form we see $\sup _{m}\left\|h_{m}\right\|_{H^{1(\Omega)}}<\infty$. By the same way as in [1] we have

$$
\left\{\begin{array}{l}
\tilde{h}_{m} \xrightarrow{w} 1 \tag{12}\\
\frac{\partial h_{m}}{\partial r} \delta_{m} \xrightarrow{s} \frac{(N-2) p\left|S_{N}\right|}{(1+(N-2) q)|\Omega|} \quad \text { in } H^{1}(\Omega)
\end{array} \quad W^{-1, \infty}(\Omega),\right.
$$

where $\left\langle\delta_{m}, v\right\rangle=\int_{\partial F_{m}} v d \sigma$ for $v \in W_{0}^{1,1}(\Omega)$ and $\partial / \partial r$ is the outer normal derivative on the boundary ∂B_{m} of $B_{m} . \quad$ Set $I_{m}(v)=\int_{\partial F_{m}}\left[\beta_{m}\left(u_{m}\right) h_{m}-u_{m} \beta_{m}\left(h_{m}\right)\right] v d$ for
$v \in H^{1}(\Omega)$. For $w \in H^{1}(\Omega)$, putting $v=h_{m} w$ into (7) we obtain

$$
\begin{align*}
I_{m}(w)= & \int_{\partial}\left[h_{m}\left(f w-\nabla \tilde{u}_{m} \nabla w\right)+u_{m} \nabla w \nabla \tilde{h}_{m}\right] d x-\int_{\partial B_{m}} \tilde{u}_{m} w \frac{\partial h_{m}}{\partial r} d \sigma \tag{13}\\
& -\int_{\Gamma} \beta_{m}\left(u_{m}\right) w d \sigma .
\end{align*}
$$

Let $k_{m}=\left(h_{m}-c_{m}\right) \mid \partial F_{m}$. Let G_{m}^{+}and G_{m}^{-}be the characteristic function of the sets $\left\{x \in \partial F_{m}: U_{m}>0\right\}$ and $\left\{x \in \partial F_{m}: V_{m}>0\right\}$, respectively. By the definition of $\beta_{m} I_{m}(\zeta)$ takes another form:

$$
\begin{align*}
I_{m}(\zeta)= & c_{m} L_{m}^{-1} \int_{\partial F_{m}}\left[\left(U_{m}-k_{m}\right) G_{m}^{+}+\left(k_{m}-V_{m}\right) G_{m}^{-}\right] \zeta d \sigma \tag{14}\\
& -k_{m} L_{m}^{-1} \int_{\partial F_{m}} u_{m}\left(1-G_{m}^{+}-G_{m}^{-}\right) \zeta d \sigma
\end{align*}
$$

The relation

$$
\begin{equation*}
I_{m}(\zeta) \rightarrow 0 \quad \text { as } m \rightarrow \infty \tag{15}
\end{equation*}
$$

follows from next two kinds of inequalities.

$$
\begin{equation*}
k_{m} L_{m}^{-1} \leqq M_{2} / r_{m} \quad \text { and } \quad\left|u_{m}\left(1-G_{m}^{+}-G_{m}^{-}\right)\right| \leqq c_{m} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\sup _{m}\left(c_{m} / r_{m}\right)^{1 / 2} L_{m}^{-1} \max \left\{\int_{\partial F_{m}} U_{m} d \sigma, \int_{\partial F_{m}} V_{m} d \sigma\right\}<\infty \tag{17}
\end{equation*}
$$

We show the first half of (17). By (3) and (9) we have $\sup _{m}\left\|U_{m}\right\|_{H^{1(\Omega)}}<\infty$. Thus, by (5), (10), (12), (13) we have $\sup _{m} I_{m}\left(U_{m}\right)<\infty$. After replacing ζ by U_{m} in (14), using the Schwarz inequality to the first term of the right hand side of (14) and using the estimate $\left|\partial F_{m}\right| \leqq r_{m} / M_{3}, k_{m} L_{m}^{-1} \leqq M_{2} / r_{m}$, dividing both sides by L_{m} further, we get

$$
\begin{equation*}
M_{4} / L_{m} \geqq\left|\left(c_{m} / r_{m}\right)^{1 / 2} \int_{\partial F_{m}} U_{m} L_{m}^{-1} d \sigma\right|^{2}-\left(c_{m} / r_{m}\right)^{1 / 2} \int_{\partial F_{m}} U_{m} L_{m}^{-1} d \sigma \tag{18}
\end{equation*}
$$

with a certain constant M_{4}. By (4), (10), the estimate on $\left|\partial F_{m}\right|$ and applying the Schwarz inequality on $\int_{\partial F_{m}} U_{m} d \sigma$, we see that, if $L_{m} \rightarrow 0$ with (4), then the value of the left hand side of (17) behaves similarly to the value of the second term of the right hand side of (18). Thus, the first half of (17) follows from (18). Similarly we obtain the remaining half of (17).

Lemma. For $\left\{v_{m} \in H^{1}\left(\Omega_{m}\right)\right\}_{m}$ such that $\sup _{m}\|v\|_{L^{2}\left(\partial F_{m}\right)}<\infty$ we have

$$
\tilde{v}_{m}-v_{m} \xrightarrow{s} 0 \quad \text { in } L^{2}(\Omega) .
$$

The sketch of the proof of Lemma is shown in [4]. By (10) and the concrete form of h_{m} Lemma is applicable to $\left\{h_{m}\right\},\left\{u_{m}\right\}$. Then

$$
\begin{equation*}
\tilde{u}_{m}-u_{m} \xrightarrow{s} 0 \text { and } \tilde{h}_{m}-h_{m} \xrightarrow{s} 0 \quad \text { in } L^{2}(\Omega) . \tag{19}
\end{equation*}
$$

Using (12), (13) and (19) the proof of

$$
\begin{equation*}
I_{m}(\zeta) \rightarrow \int_{\Omega}\left[f \zeta-\nabla u \nabla \zeta-\frac{(N-2) p\left|S_{N}\right| u \zeta}{(1+(N-2) q)|\Omega|}\right] d x \quad \text { as } m \rightarrow \infty \tag{20}
\end{equation*}
$$

is done by the same way as in [4]. (11) follows from (15) and (20). q.e.d.
Appendix.

$$
h_{\varepsilon}=\frac{L_{\varepsilon}(N-2) r_{\varepsilon}^{1-N}+\left(r_{\varepsilon}^{2-N}-\varepsilon^{2-N}\right)-\left(1-c_{\varepsilon}\right)\left(r^{2-N}-\varepsilon^{2-N}\right)}{L_{\varepsilon}(N-2) r_{\varepsilon}^{1-N}+r_{\varepsilon}^{2-N}-\varepsilon^{2-N}} .
$$

References

[1] D. Cioranescu and F. Murat: Un terme étrange venu d'ailleurs I. Nonlinear partial differential equations and their applications. Res. Notes in Math., 60, Pitman (1982).
[2] P. Grisvard: Smoothness of the solution of a monotonic boundary value problem for a second order elliptic equation in a general convex domain. Lect. Notes in Math., vol. 564, Springer (1977).
[3] M. Kac: Probabilistic methods in some problems of scattering theory. Rocky Mountain J. of Math., 4, 511-538 (1974).
[4] S. Kaizu: The Robin problems on domains with many tiny holes. Proc. Japan Acad., 61A, 39-42 (1985).
[5] S. Ozawa: On an elaboration of M. Kac's theorem concerning eigenvalues of the Laplacian in a region with randomly distributed small obstacles. Comm. Math. Physics, 91, 473-487 (1983).
[6] J. Rauch and M. Taylor: Potential and scattering theory on wildly perturbed domains. J. Funct. Anal., 18, 27-59 (1975).

