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1o Introduction. Let R be divided into an infinitely many number
of cubes C, i e N, with volume of (2e). Let B*(r,) be a closed ball of
radius r,() set in the center of C, here N>=3. Let /2 be a bounded
domain with smooth boundary F. We denote by F, the union of all balls
B(r,) (c2) such that dist (B(r,), F)_>_. Let tg=9\F,. Let be the outer
unit normal o.f 9,. For a positive number L, and a non-negative number
c we consider a monotone function / defined by (i) fl,(r)=(r+c,)/L for
rG--c,, (ii) /(r)=0 for ]r]<=c,, (iii) ,(r)=(r--c,)/L for r>=c,. In this
paper we regard f,unctions of L(9,) as functions of L(9) vanishing outside
9,. For fe L(tg) we consider the boundary value problem"
( 1 ) --du=f a.e. in

(2) u (u)=0 a.e. on 2.

The problem admits a unique solution , e H(D,) (cf. [2]). We consider
the behavior of u, under the condition

(3) sup L, oo, c,--0, r,--0 and n,--oo
where n, is the number of holes of 9,. Let Itg[ be the measure of/2. In
this paper the relation n,--[9[/(2) as e-0 is very often used. Let b be a
multivalued monotone function defined by (iv) the domain D(b)--{0}, (v)
b(0)----R. Replacing (2) by Ou,/O,+b(u,) 0 we obtain the Dirichlet bound-
ary value problem.

The behavior of the Laplacian on domains with many tiny spherical
holes, concerning the Dirichlet boundary condition, has been. studied by
M. Kac [3], J. Rauch and M. Taylor [6], S. Ozawa [5], D. Cioranescu and
F. Murat [1] and other authors. Among them we shall extend the result
of Cioranescu and Murat to the direction of the monotone boundary con-
dition (2). Intuitively we have fl,-b as L,-0 and c,-+0. Thus the above
idea may be natural. For another extension see S. Kaizu [4].

Theorem. Let u, be the solution of (1), (2) and let (t, e Hi(D) be an
extension of u, to. be harmonic in F,. Take constants p, q such that
p oo and Oq= oo. We assume that the parameters r,, n,, c, and L, vary
with (3) and
( 4 ) sup c,/r, oo, n,r,-2--p and L,/r,--q.
Then (t, converges weakly in H(t2) to. the solution of
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--zlu
(l+(N--2)q)lg]

u= 0 a.e. on F,
where S is the unit sphere of R and ISlis the N--1 dimensional measure
of S. Here we use the convention oo-1=0.

2. Proof of Theorem. We assume that the parameters , r, n, c
and L satisfy (3), (4). We denote u, 9 and F by u, 9 and F, respec-
tively. Let B U {B() 1 gign}. We denote by M0, M, generic
constants independent of e, r, c and L. We use the following property
of .
( 5 ) [Lfl(r)]Lfl(r)rr.
We denote by e H’(9) the extension of v e H(9)to. be harmonic in F.
By an inequality in Example 1 of [6] we can see that there exists a con-
stant M0 such that

for all v H() and all m. The variational formulation of (1), (2) is
written as follows"

(7) Iuvdx+yo (u)vd=Ifvdx
fo.r all v eH(9), where fl=fl. Putting v=u into (7), using (5) we
obtain

with a certain constant M, where U=O(u-c)and V=O(-u-c);
here. U, V eH(9). We write VlIH<>=IIVV[IL(>+IIVlIL<). Using (6),
(8) and the Poincar6 inequality in H(9) we obtain
( 9 sup
(10) sup
Choose a subsequence still denoted by u such that c0 for all m and

u weakly in H’(9). Then u e H(9) follows from (10). For the pro.of
it suffices to show that u satisfies

(11)

o.r all e C(9). We shall mo.diy Cioranescu and Murat’s method appli-
cable to our problem. We introduce {h e W’(9)} defined by (i) h=1 on

9B, (ii) h=0 on BF, (iii) 3h/3,+fl(h)=O on 3F. By direct calcu-
lations we see the concrete o.rm o. h on BF (see Appendix). By this
concrete orm we see sup h ]n,(,) . By the same way as in [1] we have

(12) ] 3h 3 s (Y--2)p ]S[ in W-’()
(1

where {, v}=[ vda for v e W’(9) and 3/3r is the outer normal deriva-
OF

tive on the boundary 3B of B. Set I(v)=[[fl(u)h-ufl(h)]vd for
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v e H(tg). For w e H’(/2), putting v=hw into. (7) we obtain

I(w): [h(fw -V(tVw)-t- u.VwVf] dx w hda
(13)

--It (u)wda"
Let k=(h-c)F. Let G and G; be the characteristic unction of the
sets {x eF U0} and {x eF V0}, respectively. By the definition
of fl I() takes another form:

I()=cL [(U-)G+(--V)G]de
(

L (1 G--G)d.
he relation

(lg) I()O asm
follows from next two kinds of inequalities.
(16) LM/r and

(17) su (e/r)/% max {IoUd,
We show the first half o.f (17). By (8) and (9) we have su
hus, by (g), (10), (12), (18) we have suI(U)<. After relaeing by
U in (14), using the Sehwar inequality to the first term of the righ
hand side of (14) and using the estimate
dividing both sides by L further, we get

(18) M/LI(c/r)/I,UL;’da -(c/r)/I,UL;da
with a certain constant M,. By (4), (10), the estimate on 3F[ and apply-

ing the Schwarz inequality on [ Uda, we see that, if L0 with (4),
Fm

then the value of the left hand side of (17) behaves similarly to the value
o.f the second term o.f the right hand side of (18). Thus, the first half of
(17) follows from (18). Similarly we obtain the remaining half of (17).

Lemma. For {v e H(9)} such that sup ]]v](o)< we have
8

v 0 in L(9).
The sketch o.f the proof of Lemma is shown in [4]. By (10) and the

concrete form of h Lemma is applicable to. {h}, {u}. Then
8

(19) --u0 and --h
s
0 in L(9).

Using (12), (13) and (19) the proof of

[ (N--2)plSlUldx asm(20) I() f--gug--
(I+(N--2)q)

is done by the same way as in [4]. (11) follows from (15) and (20). q.e.d.
Appendix.

h,= L’(N--2)r’-+ (r’----)--(1--c’)(r---z-)
L,(N 2)r, + r, e-
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