36. Fourier Transform of a Space of Holomorphic Discrete Series

By Takaaki NOMURA

Department of Mathematics, Kyoto University

(Communicated by Kôsaku Yosida, M. J. A., May 13, 1985)

- 1. Let G be a connected non-compact real simple Lie group of matrices and K a maximal compact subgroup of G. Assume G/K is a hermitian symmetric space. Then, G/K can be realized as a Siegel domain D of type II. Let \mathfrak{h} be a Cartan subalgebra of $\mathfrak{g}=\text{Lie }G$ contained in $\mathfrak{k}=$ Lie K, Δ the root system of (g_c, h_c) . We introduce an order in Δ compatible with the complex structure of G/K. For each K-dominant K-integral linear form Λ on $\mathfrak{h}_{\mathcal{C}}$ satisfying Harish-Chandra's non-vanishing condition [1, p. 612], the holomorphic discrete series Π_A of G is realized on a Hilbert space $\mathcal{H}(\Lambda)$ (see 5) of vector valued holomorphic functions on D. Let S(D)be the Šilov boundary of D. Then, one knows that S(D) is diffeomorphic to a certain nilpotent subgroup N(D) of the affine automorphisms of D. By identifying S(D) with N(D), the aim of this note is a description of the space $\mathcal{H}(\Lambda)$ by using the Fourier transform on N(D). If D reduces to a tube domain, N(D) is abelian. Since such a description in this case is found in [6], we assume from now on that D does not reduce to a tube Then, N(D) is a simply connected 2-step nilpotent Lie group.
- 2. Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be a Cartan decomposition of \mathfrak{g} and \mathfrak{p}_+ (resp. \mathfrak{p}_-) the sum of all root subspaces corresponding to positive (resp. negative) noncompact roots in Δ . \mathfrak{p}_\pm are abelian subalgebras of \mathfrak{g}_c normalized by \mathfrak{k}_c . Let P_\pm and K_c be analytic subgroups of G_c (Lie $G_c=\mathfrak{g}_c$) corresponding to \mathfrak{p}_\pm and \mathfrak{k}_c respectively. Every $x\in P_+K_cP_-$ can be expressed in a unique way as $x=\exp\zeta_+\cdot k(x)\cdot\exp\zeta_-$ with $\zeta_\pm\in\mathfrak{p}_\pm$, $k(x)\in K_c$. We know that G is contained in $P_+K_cP_-$. Let $\{\gamma_1,\dots,\gamma_l\}$ be a maximal system of positive noncompact strongly orthogonal roots such that for each j,γ_j is the largest positive non-compact root strongly orthogonal to $\gamma_{j+1},\dots,\gamma_l$. For every $\alpha\in A$, we choose $X_\alpha\in\mathfrak{g}_\alpha$ as in Lemma 3.1 in [2, p. 257]. Then,

$$\mathbf{a} = \sum_{1 \le i \le l} \mathbf{R}(X_{r_i} + X_{-r_i})$$

is a maximal abelian subspace of $\mathfrak p$ with l=real rank of G. Let

(1)
$$c = \exp \pi \sum_{1 \le j \le l} (X_{\tau_j} - X_{-\tau_j})/4 \in P_+ K_c P_-$$

and $\nu = \operatorname{Ad} c$. As we are assuming that G/K does not reduce to a tube domain, there is only one possibility of positive α -root system $\Phi(\alpha)^+$ compatible with the original order in Δ through ν^* [3, p. 364]: put $2\lambda_j = \nu^*(r_j)$, then

$$\Phi(\alpha)^+ = \{\lambda_i + \lambda_j ; 1 \leq j \leq i \leq l\} \cup \{\lambda_i - \lambda_j ; 1 \leq j < i \leq l\} \cup \{\lambda_i ; 1 \leq i \leq l\}.$$

We denote by n the sum of all positive α -root subspaces and put $\hat{s}=\alpha+n$. Let j be the complex structure on \hat{s} obtained by transforming the complex structure on p. We set

$$\mathfrak{Z}(0) = \mathfrak{a} + \sum_{k < m} \mathfrak{n}_{\lambda_m - \lambda_k}, \quad \mathfrak{Z}(1/2) = \sum_{1 \le k \le l} \mathfrak{n}_{\lambda_k}, \quad \mathfrak{Z}(1) = \sum_{k \le m} \mathfrak{n}_{\lambda_m + \lambda_k}.$$

Then, $\widehat{s}=\widehat{s}(0)+\widehat{s}(1/2)+\widehat{s}(1)$ and $\widehat{s}(0)$ is a subalgebra of g. Let S(0) be the analytic subgroup of G corresponding to $\widehat{s}(0)$. Choose $s\in\widehat{s}(1)$ as in [7, p. 15] and let Ω be the S(0)-orbit of s in $\widehat{s}(1)$ under the adjoint representation. By [6, Theorem 4.15], Ω is a regular open convex cone in $\widehat{s}(1)$ and diffeomorphic to S(0). For every $t\in\Omega$, we denote by $\eta_0(t)$ the unique element in S(0) for which $(\operatorname{Ad}\eta_0(t))s=t$. On the other hand, it is known that $\widehat{s}(1/2)$ can be considered as a complex vector space V by $j|_{\widehat{s}(1/2)}$. Put $W=\widehat{s}(1)_c$. Then, Q(x,y)=([jx,y]+i[x,y])/4 is an Ω -positive hermitian map $V\times V\to W$. By using this pair of Ω and Ω , we now define a Siegel domain Ω of type II: $D=\{(w,v)\in W\times V: \operatorname{Im}w-Q(v,v)\in\Omega\}$. Then, $S(D)=\{(x+iQ(\zeta,\zeta),\zeta); x\in\widehat{s}(1), \zeta\in V\}$ and $S(D)=\{(x,y): x\in\widehat{s}(1), y\in V\}$ with multiplication

$$n(x,\zeta)n(x',\zeta') = n(x+x'+2 \operatorname{Im} Q(\zeta,\zeta'), \zeta+\zeta').$$

- 3. Let \mathcal{E} be the set of all $\lambda \in \mathfrak{F}(1)^*$ such that the hermitian form $\lambda \circ Q$ is nondegenerate. \mathcal{E} contains the dual cone Ω^* . Now we have a family $(\pi_{\lambda},\mathfrak{S}_{\lambda})_{\lambda \in \mathcal{E}}$ of concrete irreducible unitary representations of N(D) enough to decompose $L^2(N(D))$ (Kirillov model). For $\lambda \in \mathcal{E}$, let $\rho(\lambda)$ be the Pfaffian of the alternating bilinear form $\operatorname{Im} \lambda \circ Q$ on $\mathfrak{F}(1/2)$. The Fourier transform \hat{f} of $f \in C_c^{\infty}(N(D))$ is by definition $\hat{f}(\lambda) = \int_{N(D)} f(n)\pi_{\lambda}(n^{-1})dn$, where dn is the Haar measure on N(D). Then, the Plancherel formula for N(D) is written as $\|f\|^2 = C \int_{\mathcal{E}} \|\hat{f}(\lambda)\|_{\operatorname{HS}}^2 \rho(\lambda) d\lambda$. The positive constant C depends only on the normalization of dn. One can define the Fourier transform of $f \in L^2(N(D))$ in the standard way.
- **4.** Let $\psi \in C(\Omega)$ be everywhere positive such that $\psi(at) = a^{\delta}\psi(t)$ $(a>0, t\in\Omega)$ for some $\delta\in\mathbf{R}$. Let $H^2(D,\psi)$ be the Hilbert space of C-valued holomorphic functions on D satisfying

$$||F||^2 = \int_D |F(x+iy,\zeta)|^2 \psi(y-Q(\zeta,\zeta)) dxdyd\zeta < \infty.$$

For $F \in H^2(D, \psi)$, put $f_t(x, \zeta) = F(x + i(t + Q(\zeta, \zeta)), \zeta)$ for every $t \in \Omega$. Then, f_t belongs to $L^2(N(D))$, so one can consider the Fourier transform $(f_t)^{\hat{}}$. Now \mathfrak{F}_{λ} can be identified with $L^2(\mathbf{R}^n)$, where $n = \dim_c V$. Let ϕ_0^{λ} be the zero-th Hermite function and V_{λ} the one dimensional subspace of \mathfrak{F}_{λ} spanned by ϕ_0^{λ} . We denote by $\mathcal{H}^2(\Omega^*, \psi)$ the Hilbert space of functions Φ on \mathcal{E} taking value at $\lambda \in \mathcal{E}$ in the Hilbert space of Hilbert-Schmidt operators on \mathfrak{F}_{λ} such that (i) $\Phi(\lambda) = 0$ if $\lambda \notin \Omega^*$; (ii) Range $\Phi(\lambda) \subset V_{\lambda}$ if $\lambda \in \Omega^*$;

$$\text{(iii)} \ \|\varPhi\|^2 = C \int_{\varrho^*} \|\varPhi(\lambda)\|_{\mathrm{HS}}^2 I_{\psi}(\lambda) \rho(\lambda) d\lambda < \infty, \ \text{where} \ I_{\psi}(\lambda) = \int_{\varrho} e^{-2\lambda(x)} \psi(x) dx.$$

Theorem 1. Let $F \in H^2(D, \psi)$ and f_t be as above. Then, $\Phi(\lambda) = e^{\lambda(t)}(f_t)^{\hat{}}(\lambda)$ is independent of $t \in \Omega$ and belongs to $\mathcal{H}^2(\Omega^*, \psi)$. Conversely, let $\Phi \in \mathcal{H}^2(\Omega^*, \psi)$. Then,

$$F(x+i(t+Q(\zeta,\zeta)),\zeta) = C \int_{\varrho_*} e^{-\lambda(t)} \operatorname{Tr} \left[\pi_{\lambda}(x,\zeta)\Phi(\lambda)\right] \rho(\lambda) d\lambda$$

is absolutely convergent and gives an element $F \in H^2(D, \psi)$ such that $\Phi(\lambda) = e^{\lambda(t)}(f_t)^{\hat{}}(\lambda)$. Moreover, the map $F \mapsto \Phi$ is unitary.

5. Let Λ be as in 1 and τ_{Λ} the irreducible unitary representation of K on a finite dimensional Hilbert space E with highest weight Λ . Since P_+K_C is a semidirect product, τ_{Λ} can be naturally extended to a representation of P_+K_C . Let $c \in G_C$ be the element defined by (1) and put $\Phi_{\Lambda}(g) = \tau_{\Lambda}(k(c)^{-1})\tau_{\Lambda}(k(cg))$. We note $cg \in P_+K_CP_-$ for $g \in G$. Put

$$\theta_0(t) = |\det_{\mathfrak{s}(1/2)} \operatorname{Ad} \eta_0(t)|^{-1} |\det_{\mathfrak{s}(1)} \operatorname{Ad} \eta_0(t)|^{-2} \qquad (t \in \Omega)$$

and $\Theta_{A}(\alpha(h)) = \Phi_{A}(h)$ $(h \in S = \exp \hat{s})$, where α is the map $G \to D$ which induces a G-equivariant biholomorphism of G/K onto D. Now, $\mathcal{H}(\Lambda)$ consists of E-valued holomorphic functions on D with

$$\|F\|^2 = \int_D \|\Theta_{\boldsymbol{A}}(iy,\zeta)^{-1}F(x+iy,\zeta)\|^2 \, heta_0(y-Q(\zeta,\zeta))dxdyd\zeta < \infty \,.$$

Let v_A be a highest weight vector for τ_A normalized so that $||v_A||=1$. We take an orthonormal basis $v_1 = v_A$, v_2 , \cdots , v_d ($d = \text{deg } \tau_A$) in E consisting of weight vectors arranged in order so that any vector in the root subspaces corresponding to positive compact roots in Δ is represented, under au_{A} , by an upper triangular matrix. We denote by A_{I} the weight for v_{I} . Let E_k be the one dimensional subspace of E spanned by v_k and $\mathcal{H}_i(\Lambda)$ = $\{F \in \mathcal{H}(\Lambda); F(w,\zeta) \in E^j\}, \text{ where } E^j = E_i \oplus \cdots \oplus E_j.$ Then, $\mathcal{H}_j(\Lambda)$ is a closed subspace of $\mathcal{H}(\Lambda)$ invariant under $\Pi_{\Lambda}|_{\mathcal{S}}$. Let $\mathcal{H}^1(\Lambda) = \mathcal{H}_1(\Lambda)$ and $\mathcal{H}^1(\Lambda) = \text{the}$ orthogonal complement of $\mathcal{H}_{j-1}(A)$ in $\mathcal{H}_{j}(A)$ $(j \geq 2)$. Put $Y_i = X_{r_i} + X_{-r_i}$ and define a positive character χ_j of $A = \exp \alpha$ by $\chi_j(\exp \sum \alpha_i Y_i) = \prod \exp \alpha_i \Lambda_j(\nu(Y_i))$. Extending χ_i canonically to a character of S, we put $\psi_i(t) = \chi_i(\eta_0(t))^{-2}\theta_0(t)$ for $t \in \Omega$. Then, $\psi_j(at) = a^{\delta_j} \psi_j(t)$ $(a > 0, t \in \Omega)$ for some $\delta_j \in \mathbf{R}$. Consider the Hilbert space $H^2(D, \psi_j)$ of the type in 4 and define an operator T_j by $T_{j}F(w,\zeta) = (F(w,\zeta), v_{j}) \ (F \in \mathcal{H}_{j}(\Lambda)). \ T_{j} \ \text{is a bounded operator} \ \mathcal{H}_{j}(\Lambda) \rightarrow$ $H^{2}(D,\psi_{j})$ with dense range. Therefore by considering the polar decomposition of T_i , $\mathcal{H}^i(\Lambda)$ is unitarily isomorphic to $H^i(D, \psi_i)$. Thus we have an irreducible decomposition $\mathcal{H}(\Lambda) = \mathcal{H}^1(\Lambda) \oplus \cdots \oplus \mathcal{H}^d(\Lambda)$ for $\Pi_A|_S$ [6, p. 381].

6. Put $I_{A}(\lambda) = \int_{\varrho} e^{-2\lambda(t)} \Phi_{A}(\eta_{0}(t)^{-1})^{2} \theta_{0}(t) dt$ $(\lambda \in \Omega^{*})$. The integral is absolutely convergent. Now the matrix of $I_{A}(\lambda)$ relative to the basis (v_{k}) is upper triangular with (k, k)-entry $I_{\psi_{k}}(\lambda) > 0$. Therefore we can give a meaning to $I_{A}(\lambda)^{1/2}$. Let $B_{2}(\mathfrak{S}_{\lambda})$ be the Hilbert space of Hilbert-Schmidt operators on \mathfrak{S}_{λ} . We put $A(\mathfrak{S}_{\lambda}) = \{T \in B_{2}(\mathfrak{S}_{\lambda}) : \text{Range } T \subset V_{\lambda}\}$. It is evident that $A(\mathfrak{S}_{\lambda})$ is a closed subspace of $B_{2}(\mathfrak{S}_{\lambda})$. Consider the Hilbert space tensor product $A(\mathfrak{S}_{\lambda}) \otimes E$ of two Hilbert spaces $A(\mathfrak{S}_{\lambda})$ and E. This is regarded as the Hilbert space of anti-linear Hilbert-Schmidt operators mapping E to $A(\mathfrak{S}_{\lambda})$ via $(T \otimes v)(u) = (v, u)T$. For $\lambda \in \Omega^{*}$, we define an operator $M_{A}(\lambda)$ on $A(\mathfrak{S}_{\lambda}) \otimes E$ by $M_{A}(\lambda)(T \otimes v) = T \otimes I_{A}(\lambda)^{1/2}v$. Let $H(\Lambda)$ be the Hilbert space of functions V on E whose value at $\lambda \in E$ is in $A(\mathfrak{S}_{\lambda}) \otimes E$ such that

 $(\mathrm{i}) \quad \varPsi(\lambda) = 0 \ \mathrm{if} \ \lambda \not\in \varOmega^* \ ; \qquad (\mathrm{ii}) \quad \|\varPsi\|^2 = C \int_{\varOmega^*} \|M_{\scriptscriptstyle A}(\lambda) \varPsi(\lambda)\|^2 \, \rho(\lambda) d\lambda < \infty \, .$

Put $H_j(\Lambda) = \{ \Psi \in H(\Lambda) ; \Psi(\lambda) \in A(\mathfrak{F}_j) \otimes E^j \}$ and $T_j \Psi(\lambda) = \Psi(\lambda) v_j \in A(\mathfrak{F}_{\lambda})$ for $\Psi \in H_j(\Lambda)$. T_j is a bounded operator $H_j(\Lambda) \to \mathcal{H}^2(\Omega^*, \psi_j)$ with dense range. Let $H^1(\Lambda) = H_1(\Lambda)$ and $H^j(\Lambda) =$ the orthogonal complement of $H_{j-1}(\Lambda)$ in $H_j(\Lambda)$ $(j \geq 2)$. Then, $H^j(\Lambda)$ is unitarily isomorphic to $\mathcal{H}^2(\Omega^*, \psi_j)$ via the polar decomposition of T_j . Therefore, we have an orthogonal decomposition $H(\Lambda) = H^1(\Lambda) \oplus \cdots \oplus H^d(\Lambda)$. In view of Theorem 1, we get

Theorem 2. $\mathcal{H}(\Lambda)$ is unitarily isomorphic to $\mathcal{H}(\Lambda)$ under the procedure described above.

References

- [1] Harish-Chandra: Amer. J. Math., 78, 564-628 (1956).
- [2] S. Helgason: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York (1978).
- [3] C. C. Moore: Amer. J. Math., 86, 358-378 (1964).
- [4] T. Nomura: A description of a space of holomorphic discrete series by means of the Fourier transform on the Šilov boundary (preprint).
- [5] R. D. Ogden and S. Vagi: Adv. Math., 33, 31-92 (1979).
- [6] H. Rossi and M. Vergne: J. Funct. Anal., 13, 324-389 (1973).
- [7] M. Vergne and H. Rossi: Acta Math., 136, 1-59 (1976).