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Introduction. In this paper we study pluricanonical maps of non-
singular 3-folds of general type over C, provided that they have minimal
models. Details will be published elsewhere.

Our main result is stated as follows.

Theorem. Let X be a minimal 3-fold of general type with index r
and let K, denote the canonical divisor. Then the n-ple pluricanonical
map D,,xy ts birational for n=n, where

n,=9 if r=1,
n,=8 if r=1 and if X is Q-factorial,
n,=13 if r=2,

ny=4r+4 if 3<r<5,
n,=4r+3 if r=6.
For the definition of pluricanonical maps, see section 1.

The problem of the birationality of pluricanonical maps for 3-folds has
been treated by Benveniste and Matsuki [56] for minimal and non-singular
8-folds. Actually they proved that @,,%,, is birational for n=8.

‘When we consider the birationality problem for 3-folds admitting
minimal models, we can assume that the 3-folds are minimal. It is con-
jectured that all 3-folds of general type have minimal models.

The author expresses his hearty thanks to Professor S. Iitaka and
Professor Y. Kawamata for their invaluable advice and warm encourage-
ment.

§1. Preliminaries.

Definition 1. Let X be a normal projective variety. A Weil divisor
D is said to be Q-Cartier if mD is a Cartier divisor for some positive
integer m. X is said to be Q-factorial if any Weil divisor is Q-Cartier.
A @-Cartier divisor D is defined to be numerically effective or nef if (D-C)
>0 for any irreducible curve C on X.

Definition 2 (Reid [6]). Let X be a normal projective variety, and
K, the canonical divisor. We say that X has only canonical singularities,
if K, is Q-Cartier and for a resolution : X—X thereis a natural morphism
prol—o$® for any s=1. The minimum integer » such that rKy is Cartier
is called the index of X.

Definition 3 (Reid [6], [7]). Let X be a normal projective variety. X
is said to be minimal or a minimal model if X has only canonical singu-
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larities and if K is nef. Moreover if K, is ample,we say it is a canonical
variety.

For a normal projective variety X the rational map associated with
the linear system |nK,|is called the n-ple pluricanonical map. If X isa
minimal model, letting p: XX be a resolution of singularities, we have
Dokz1=Dinky - We note that the index is independent of a choice of a
minimal model for a variety of general type.

We shall use the vanishing theorem of Kawamata [2] and Viehweg [8]
and the following extended version by Kawamata.

Lemma 1. Let X be a normal projective variety with only canonical
stngularities. Let D be o Q-Cartier Weil divisor such that D—K, is nef
and (D—K)%=X>0. Then HYX, Ox(D))=0 for any i>0, where Ox(D)
denotes the reflexive sheaf of rank 1 associated with D.

In the proof of theorem, we reduce the problem to the birationality
of certain linear systems on surfaces and apply the following proposition.

Proposition 1 (Benveniste [1], Matsuki [5]). Let S be a non-singular
surface, R a nef and big divisor on S and m a positive integer. Assume
the following conditions:

1) Given any two distinct points x, ye S, let u: S—S be the bira-
tional morphism obtained by blowing up S at x and y, then H 'S, Os(p*(mR)
—2L,—2L,))#0, where L,=p"'(x) and L,=p '(¥).

2) m=4or

@)Y m=3 and (R*)=2.

Then @ gginz s birational.

2. Outline of the proof of the theorem. If theindex r=1, the proof
is almost the same as in Matsuki [6]. Thus we shall assume =2 in the
following argument.

The proof will be completed if we combine the following two propo-
sitions.

Proposition 2. Let X be a minimal 3-fold of general type with index
r=2. We write P(n) instead of h°(X, Oy(nKy)) for simplicity.

(i) Pm)+0 for any n=r+2. P@mr)=12 for any m=3.

(ii) |(mr+s)Ky|is not composed of a pencil with dimension=3 where
r, 8, m satisfy one of the following conditions:

1) r=2. s=0, m=3or s=1, m=3.

@) 3<r<5. s=0,m=2o0r s=1, m=2 or s=2, m=2.

@) r=6. s=0, m=2or s=1, m=2 or s=2, m=1.

Proposition 3. Let X be a minimal 3-fold of general type with index
r=2 and s, a, k, n integers satisfying the following conditions:

@ o0ss<w,

2) |(ar+8)K|is not composed of a pencil,

3B) Pn—ar—s)+0,

4) Pn—kr—s—1)=+0,

b)) k—az=3,
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(6) P(ar+s)=4,
M P(k—a)r)=9.
Then D,k 18 a birational map.
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