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1o Introduction. Let A be the infinitesimal generator o a
(C0)-semigroup {T(t); t>_0} on a Banach space X, and let F be a
Lipschitzian on X. It is known that A+F generates a nonlinear
semigroup {S(t) t0} on X, i.e.,

S(t)x lim (I-- 2A 2F)-Etnx (x e X, t

_
0),

and that for every x e X, S(t)x is a (unique) mild solution to the semi-
linear equation
(1.1) (d/dt)u(t)=[A+F]u(t) (t=O), u(0)=x,
i.e., u(t)=S(t)x is continuous in t>=0 and satisfies the integral equation

u(t)= T(t)x q-.[: T(t--s)ru(s)ds (t_O).(1.2)

(See [2].)
By dF(x) we denote the derivative o F at x, i.e.,

dF(x)w lim 0 [F(x+ hw)--Fx] / h (x, w e X).
We say that F is continuously Gteaux (resp. Frchet) differentiable
on X if xdF(x) is continuous on X in the strong (resp. uniform)
operator topology.

The. purpose of this paper is to investigate the relations between
the continuous Gteaux (or Frchet) differentiability of F and S(t).
Our results (Theorems 1 and 2 in 2) are closely related to [3] and [5],
which discuss the Frchet differentiability of S(t) and the regularity
o solutions to (1.1) and (1.2) in case that F is continuously Frchet
differentiable on X.

2. Theorems. Our results are as ollows"
Theorem 1. Let F be continuously G(teaux (resp. Frdchet) dif-

ferentiable on X. Then we have
(a) S(t) is continuously G(teaux (resp. Frgchet) differentiable on

X for each tO, and dS(t)(x)w is continuous in (t,x,w)e[O, oo)X
X.

(b)

(2.1)

The derivative of S(t) is represented by

dS(t)(x)w lim l-I /= [I 2A dF(S(i2)x)]-w
--lim,0 I-[*/[I=--2A--dF(Jx)]-w
=limo dJ/ (x)w (t>O__ x, w e X),

where J=(I-2A-2F)-, and the convergence is unifo.rm on bo.unded
interval.
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(c) If x e D(A), then S(t)x e D(A) for any tO, and S(t)x is a C
solution to (1.1) and satisfies
(2.2) (d / dt)S(t)x dS(t)(x)[n +F]x (= [n/F]S(t)x) (t >= 0).

(d) dS(t)(x)w (x, w e X) is a mild solution to
(2.3) (d/dt)v(t) [n+ dF(S(t)x)]v(t) (t= 0), v(O) w,
i.e., v(t)=dS(t)(x)w satisfies the integral equation

(2.4) v(t)= T(t)w+[o T(t-- s)dF(S(s)x)v(s) ds (t >= O).
(e) U(t,s)=dS(t-s)(S(s)x) (O<=s<=t) is a linear evolution opera-

to.r on X.
() A /dF(S(t)x) is the infinitesimal generator o.f U(t, s) at t, i.e.
[A+dF(S(t)x)]w=limto[U(t+h,t)w--w]/h (w e D(A)).

(g) The derivative o.f F is represented by

(2.5) dF(x)w-- lim 0 [dS(h)(x)w- T(h)w] h
(=(d/dt)/[dS(t)(x)w T(t)w]=o),

where the convergence is uniform in x on compact (resp. bounded)se$

of X for each w e X.
Remark. It is known ([4]) that (c) dces not hold in general.

Theorem 2. F is continuously G5teaux differentiable on X if and
only if (a) in Theorem 1 and the following (gt) holds"

(g’) The limit of (2.5) exists fo.r each x e X and w e D(A), and the;

convergence is uniform in x on co.mpact set of X.
:. Proofs of theorems. We shall only give outlines o proofs..

For details, we shall publish elsewhere with other results.
Proof of Theorem 1. (a) and (d) Let V(t, x) be the. bounded linear

operator on X defined by V(t, x)w=v(t), where v(t) is a mild solution
to (2.3). From (1.2) and (2.3), we huve
[S(t)(x+ hw) S(t)x] /h- V(t, x)w

g M .[:o [S(s)(x+ hw)-S(s)x]/h- V(s, x)w ds

+N .[i F[S(s)x/ hV(s, x)w]-FS(s)x- hdF(S(s)x)V(s, x)w ]l/h ds,.

where M and N are positive constants independent of t in bounded
interval. Using Gronwall’s type estimate, we have the uniform con-
vergence o [S(t) (x / hw)-S(t)x]/h to V(t, x)w on compact (resp.
bounded) set o [0, c)X X as h $ 0.

(b) From the continuity o dF(.), [A+dF(S(t)x)]w is continuous
in t or each w e D(A), and or any T0 there exists o0 such that
A+dF(S(t)x)-oI (t e [0, T]) is linear m-dissipative. From this, we
have the. uniform convergence o the first equality in (2.1). (See [1].)
It is easy to check that the difference between

V[/3 -A-dF(S(i)x)]-lw and I-[t/3 [I--A--dF(Jx)]-lw
converges to 0 uniformly on each bounded interval as 2 $ 0, and that
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dJ(x) is equal to [I--2A--2dF(Jx)] -1. Consequently, (b) holds.
(c) It is shown ([4])that S’(O)x exists or each x e D(A) and is

equal to (A+F)x, and that S’(t)x (x e D(A)) is equal to (A /F)S(t)x if
it exists. Let h0 and x e D(A). We have

[S(t-t- h)x S(t)x] / h-- dS(t)(x)[S(h)x x] / h

[o {dS(t)[OS(h)x+ (1 -O)x] -dS(t)(x)}[S(h)x-- x] / h dO.+
Letting h $ 0, we have S’/(t)=dS(t)(x)[A+F]x or x e D(A). Since
dS(t)(x)[A/F]x is continuous in t, S(t)x (x e D(A)) is a Cl-solution to
(1.1).

(e) ollows rom the. chain rule of derivation.
(f) and (g) U(t+ h, t)w (w e D(A)) satisfies

U(t+ h, t)w-- T(h)w+[: T(h--s)dF(S(t/ s)x)U(t+ s, t)w ds.

The second term o the right-hand side is differentiable at h=0 for
any w e X and its derivative is dF(S(t)x)w. Letting t--0, we have
(2.5). It is easy to check the uniform convergence. If w e D(A), then
T(h)w is differentiable in h. Thus we have (f).

To prove Theorem 2, we shall mention the following lemma with-
out proof.

Lemma. Let f(t) ( e I) be a continuous X-valued function on
[0, T] with f(0)=0 and differentiable at t=0. Assume that the con-
vergence

f’(0) lim 0 [f(h)--f(O)]/h
is uniform in e I and {llft(0)ll} is bounded. Then we have

’0 -2 / 2)f(s) dsf( ) lira2 exp(--s
250 d0

where the convergence is uniform in e I for some in(O, T].

Proof of Theorem 2. For 20, we set

Since S(t)x-T(t)x is differentiable at t=0 or any x e X, we have Fx
=lim0 Fx. It is clear that F is continuously Gteaux differentiable
on X and its derivative is

dF(x)w=2-2 [i exp (--s/2)[dS(s)(x)w-T(s)w]ds.

Applying the lemma, we have that for each w e D(A)
G(x)w=lim0 dF(x)w uniformly in x on every compact set.

Since F is Lipschitz continuous on X and D(A) is dense in X, G(x) is
extended to a bounded linear operator G(x) defined on X. It follows
that xG(x) is continuous on X in the strong operator topology and
G(x) is the Gteaux derivative of F at x.
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