26. Semigroups of Differentiable Operators

By Kenichi FUKUDA

Department of Mathematics, Waseda University

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1984)

§ 1. Introduction. Let A be the infinitesimal generator of a (C_0) -semigroup $\{T(t); t \ge 0\}$ on a Banach space X, and let F be a Lipschitzian on X. It is known that A+F generates a nonlinear semigroup $\{S(t); t \ge 0\}$ on X, i.e.,

$$S(t)x = \lim_{\lambda \downarrow 0} (I - \lambda A - \lambda F)^{-\lceil t/\lambda \rceil} x \qquad (x \in X, t \ge 0),$$

and that for every $x \in X$, S(t)x is a (unique) mild solution to the semi-linear equation

$$(1.1) (d/dt)u(t) = [A+F]u(t) (t \ge 0), u(0) = x,$$

i.e., u(t) = S(t)x is continuous in $t \ge 0$ and satisfies the integral equation

(1.2)
$$u(t) = T(t)x + \int_0^t T(t-s)Fu(s) ds \qquad (t \ge 0).$$

(See [2].)

By dF(x) we denote the derivative of F at x, i.e.,

$$dF(x)w = \lim_{h \downarrow 0} \left[F(x+hw) - Fx \right] / h \qquad (x, w \in X).$$

We say that F is continuously Gâteaux (resp. Fréchet) differentiable on X if $x \mapsto dF(x)$ is continuous on X in the strong (resp. uniform) operator topology.

The purpose of this paper is to investigate the relations between the continuous Gâteaux (or Fréchet) differentiability of F and S(t). Our results (Theorems 1 and 2 in § 2) are closely related to [3] and [5], which discuss the Fréchet differentiability of S(t) and the regularity of solutions to (1.1) and (1.2) in case that F is continuously Fréchet differentiable on X.

§ 2. Theorems. Our results are as follows:

Theorem 1. Let F be continuously Gâteaux (resp. Fréchet) differentiable on X. Then we have

- (a) S(t) is continuously Gâteaux (resp. Fréchet) differentiable on X for each $t \ge 0$, and dS(t)(x)w is continuous in $(t, x, w) \in [0, \infty) \times X \times X$.
 - (b) The derivative of S(t) is represented by

(2.1)
$$dS(t)(x)w = \lim_{\lambda \downarrow 0} \prod_{i=1}^{\lceil t/2 \rceil} [I - \lambda A - \lambda dF(S(i\lambda)x)]^{-1}w$$

$$= \lim_{\lambda \downarrow 0} \prod_{i=1}^{\lceil t/2 \rceil} [I - \lambda A - \lambda dF(J_{\lambda}^{i}x)]^{-1}w$$

$$= \lim_{\lambda \downarrow 0} dJ_{\lambda}^{\lceil t/2 \rceil}(x)w \qquad (t \geq 0; x, w \in X),$$

where $J_{\lambda} = (I - \lambda A - \lambda F)^{-1}$, and the convergence is uniform on bounded interval.

- (c) If $x \in D(A)$, then $S(t)x \in D(A)$ for any $t \ge 0$, and S(t)x is a C^1 solution to (1.1) and satisfies
- (d/dt)S(t)x = dS(t)(x)[A+F]x (=[A+F]S(t)x) (t\ge 0). (2.2)
 - dS(t)(x)w $(x, w \in X)$ is a mild solution to (d)
- (2.3)(d/dt)v(t) = [A + dF(S(t)x)]v(t) $(t \ge 0)$, v(0) = w,
- i.e., v(t) = dS(t)(x)w satisfies the integral equation

(2.4)
$$v(t) = T(t)w + \int_0^t T(t-s)dF(S(s)x)v(s) ds$$
 $(t \ge 0).$

- $U(t,s)=dS(t-s)(S(s)x) \ (0 \le s \le t)$ is a linear evolution opera-(e) tor on X.
 - (f) A+dF(S(t)x) is the infinitesimal generator of U(t,s) at t, i.e., $[A+dF(S(t)x)]w = \lim_{h \to 0} [U(t+h,t)w-w]/h$ $(w \in D(A)).$
 - The derivative of F is represented by

(2.5)
$$dF(x)w = \lim_{h \downarrow 0} \left[dS(h)(x)w - T(h)w \right]/h$$

$$(= (d/dt)^{+} \left[dS(t)(x)w - T(t)w \right]_{t=0},$$

where the convergence is uniform in x on compact (resp. bounded) set of X for each $w \in X$.

Remark. It is known ([4]) that (c) does not hold in general.

Theorem 2. F is continuously Gâteaux differentiable on X if and only if (a) in Theorem 1 and the following (g') holds:

- (g') The limit of (2.5) exists for each $x \in X$ and $w \in D(A)$, and the convergence is uniform in x on compact set of X.
- §3. Proofs of theorems. We shall only give outlines of proofs. For details, we shall publish elsewhere with other results.

Proof of Theorem 1. (a) and (d) Let V(t, x) be the bounded linear operator on X defined by V(t,x)w=v(t), where v(t) is a mild solution to (2.3). From (1.2) and (2.3), we have

$$||[S(t)(x+hw)-S(t)x]/h-V(t,x)w||$$

$$\leq M \int_{0}^{t} \|[S(s)(x+hw)-S(s)x]/h - V(s,x)w\| ds$$

$$\leq M \int_0^t \|[S(s)(x+hw) - S(s)x]/h - V(s,x)w\| ds \\ + N \int_0^t \|F[S(s)x + hV(s,x)w] - FS(s)x - hdF(S(s)x)V(s,x)w\|/h ds,$$

where M and N are positive constants independent of t in bounded interval. Using Gronwall's type estimate, we have the uniform convergence of [S(t)(x+hw)-S(t)x]/h to V(t,x)w on compact (resp. bounded) set of $[0, \infty) \times X \times X$ as $h \downarrow 0$.

(b) From the continuity of $dF(\cdot)$, [A+dF(S(t)x)]w is continuous in t for each $w \in D(A)$, and for any $T \ge 0$ there exists $\omega > 0$ such that $A+dF(S(t)x)-\omega I$ $(t \in [0,T])$ is linear m-dissipative. From this, we have the uniform convergence of the first equality in (2.1). (See [1].) It is easy to check that the difference between

 $\prod_{i=1}^{\lfloor t/\lambda \rfloor} [I - \lambda A - \lambda dF(S(i\lambda)x)]^{-1}w \quad \text{and} \quad \prod_{i=1}^{\lfloor t/\lambda \rfloor} [I - \lambda A - \lambda dF(J_{\lambda}^{i}x)]^{-1}w$ converges to 0 uniformly on each bounded interval as $\lambda \downarrow 0$, and that $dJ_{\lambda}(x)$ is equal to $[I-\lambda A-\lambda dF(J_{\lambda}x)]^{-1}$. Consequently, (b) holds.

(c) It is shown ([4]) that S'(0)x exists for each $x \in D(A)$ and is equal to (A+F)x, and that S'(t)x ($x \in D(A)$) is equal to (A+F)S(t)x if it exists. Let h>0 and $x \in D(A)$. We have

$$[S(t+h)x-S(t)x]/h = dS(t)(x)[S(h)x-x]/h + \int_{0}^{1} \{dS(t)[\theta S(h)x+(1-\theta)x]-dS(t)(x)\}[S(h)x-x]/h d\theta.$$

Letting $h \downarrow 0$, we have $S'^+(t) = dS(t)(x)[A+F]x$ for $x \in D(A)$. Since dS(t)(x)[A+F]x is continuous in t, S(t)x ($x \in D(A)$) is a C^1 -solution to (1.1).

- (e) follows from the chain rule of derivation.
- (f) and (g) U(t+h, t)w ($w \in D(A)$) satisfies

$$U(t+h,t)w = T(h)w + \int_{0}^{h} T(h-s)dF(S(t+s)x)U(t+s,t)w ds.$$

The second term of the right-hand side is differentiable at h=0 for any $w \in X$ and its derivative is dF(S(t)x)w. Letting t=0, we have (2.5). It is easy to check the uniform convergence. If $w \in D(A)$, then T(h)w is differentiable in h. Thus we have (f).

To prove Theorem 2, we shall mention the following lemma without proof.

Lemma. Let $f_a(t)$ ($\alpha \in I$) be a continuous X-valued function on [0, T] with $f_a(0) = 0$ and differentiable at t = 0. Assume that the convergence

$$f'_{\alpha}(0) = \lim_{h \downarrow 0} [f_{\alpha}(h) - f_{\alpha}(0)]/h$$

is uniform in $\alpha \in I$ and $\{\|f'_{\alpha}(0)\|\}$ is bounded. Then we have

$$f_{\alpha}'(0) = \lim_{\lambda \downarrow 0} \lambda^{-2} \int_{0}^{\tau} \exp(-s/\lambda) f_{\alpha}(s) ds,$$

where the convergence is uniform in $\alpha \in I$ for some τ in (0, T].

Proof of Theorem 2. For $\lambda > 0$, we set

$$F_{\lambda}x = \lambda^{-2} \int_{0}^{\tau} \exp(-s/\lambda)[S(s)x - T(s)x] ds$$
 $(x \in X).$

Since S(t)x - T(t)x is differentiable at t = 0 for any $x \in X$, we have $Fx = \lim_{\lambda \downarrow 0} F_{\lambda}x$. It is clear that F_{λ} is continuously Gâteaux differentiable on X and its derivative is

$$dF_{\lambda}(x)w = \lambda^{-2} \int_0^{\tau} \exp\left(-s/\lambda\right) [dS(s)(x)w - T(s)w] ds.$$

Applying the lemma, we have that for each $w \in D(A)$

 $G(x)w = \lim_{\lambda \downarrow 0} dF_{\lambda}(x)w$ uniformly in x on every compact set. Since F_{λ} is Lipschitz continuous on X and D(A) is dense in X, G(x) is extended to a bounded linear operator $\overline{G(x)}$ defined on X. It follows that $x \mapsto \overline{G(x)}$ is continuous on X in the strong operator topology and $\overline{G(x)}$ is the Gâteaux derivative of F at x.

References

- [1] K. Kobayasi: On a theorem for linear evolution equations of hyperbolic type. J. Math. Soc. Japan, 31, 647-654 (1979).
- [2] A. Pazy: Semi-groups of linear operators and applications to partial differential equations. Dept. of Math., Univ. of Maryland (1974).
- [3] I. Segal: Non-linear semi-groups. Ann. Math., 78, 339-364 (1963).
- [4] G. Webb: Continuous nonlinear perturbations of linear accretive operators in Banach spaces. J. Funct. Anal., 10, 191-203 (1972).
- [5] F. Weissler: Semilinear evolution equations in Banach spaces. ibid., 32, 277-296 (1979).