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§1. Introduction. Let A be the infinitesimal generator of a
(Cy)-semigroup {T'(¢); t=0} on a Banach space X, and let F be a
Lipschitzian on X. It is known that A+F generates a nonlinear
semigroup {S(t); £=0} on X, i.e.,

S@)e=lim,,, I —1A —F)Tt/y (xe X, t=0),
and that for every x ¢ X, S(¥)x is a (unique) mild solution to the semi-
linear equation

1.1 d/dOu@)=[A+Flu@) ¢=0), u0)=z,

i.e., u(t)=8S()x is continuous in =0 and satisfies the integral equation
1.2) =Tt +£ Tt—s)Fus)ds  (t=0).

(See [2].)

By dF(x) we denote the derivative of F' at z, i.e.,
dF(x)w=1lim, , [F(x+hw)—Fx]/h (z, we X).

We say that F is continuously Gateaux (resp. Fréchet) differentiable
on X if x—dF(x) is continuous on X in the strong (resp. uniform)
operator topology.

The purpose of this paper is to investigate the relations between
the continuous Géteaux (or Fréchet) differentiability of F' and S(t).
Qur results (Theorems 1 and 2 in § 2) are closely related to [3] and [5],
which discuss the Fréchet differentiability of S(¢) and the regularity
of solutions to (1.1) and (1.2) in case that F' is continuously Fréchet
differentiable on X.

§2. Theorems. Our results are as follows:

Theorem 1. Let F be continuously Gdateaux (resp. Fréchet) dif-
ferentiable on X. Then we have

(a) S() is continuously Gateaux (resp. Fréchet) differentiable on
X for each t=0, and dSE)(x)w is continuous in (¢, x, w) € [0, o) X X
x X.

(o) The derivative of S(t) is represented by

dSt)(@)w=1im, , [[¥2 [ —24 —2dF(SG)x)]"'w
2.1 =lim,,, [["A I —2A —AdF (Jix)]"'w
=lim,,, dJ%4 (x)w t=0; 2, we X),

where J;=I—21A —AF)"}, and the convergence is uniform on bounded
interval.
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(¢) If x e D(A), then S(t)x € D(A) for any t=0, and S(t)x is a C'-
solution to (1.1) and satisfies
2.2) d/at)S@x=dSE @A+ Flz (=[A+F1St)x) (¢=0).
@ dS@®(@)w (x,w e X) is a mild solution to
(2.3) (d/dyw®)=[A+dFSHn)]vE) (E=0), v(0)=w,
i.e., v(t)=dS({t)(x)w satisfies the integral equation

2.4) (@)= T(t)w—i—J: T(t—s)dFSEn)w(s)ds  (E=0).

(e) U@,s)=dS{t—s)(S(s)x) (0<s<t) is a linear evolution opera-
tor on X.

) A4+dF(S()x) is the infinitesimal generator of U(t,s) at t,i.e.,

[A+dF(S®)Iw=1lim, ,,[UE+h, h)w—wl/h (w e D(A)).

(g) The derivative of F is represented by

2.5) dF (x)w=1lim, , [dSR)(@)w—THR)wl/h

(=@d/dt)* [dSO)(@)w—T O wl, ),
where the convergence is uniform in x on compact (resp. bounded) set
of X for each we X.

Remark. It is known ([4]) that (¢) does not hold in general.

Theorem 2. F'is continuously Gateaux differentiable on X if and
only if (a) in Theorem 1 and the following (g’) holds:

(g") The limit of (2.5) exists for each x € X and w € D(A), and the
convergence is uniform in x on compact set of X.

§3. Proofs of theorems. We shall only give outlines of proofs.
For details, we shall publish elsewhere with other results.

Proof of Theorem 1. (a)and (d) Let V (¢, x) be the bounded linear
operator on X defined by V(¢, x)w=v(t), where »(t) is a mild solution
to (2.3). From (1.2) and (2.3), we have
IIS@ (@ +hw)—SE)x1/h—V (¢, x)w||

<M j: I1S() @+ hw) — S(8)a] [ h— Vs, &)w ]| ds

+N.|.: IFIS()x+ 1V (s, @)wl —FS(s)z —hdF(S®)x)V (s, 2w/ hds,

where M and N are positive constants independent of ¢ in bounded
interval. Using Gronwall’s type estimate, we have the uniform con-
vergence of [S()(x+hw)—SE)xl/h to V(t,x)w on compact (resp.
bounded) set of [0, o)X XXX as h | 0.

(b) From the continuity of dF(-), [A+dF(S()x)]w is continuous
in t for each w € D(A), and for any T>=0 there exists >0 such that
A+dF(S@)x)—ol (tel0,T]) is linear m-dissipative. From this, we
have the uniform convergence of the first equality in (2.1). (See[1].)
It is easy to check that the difference between

TR —2A—2dF(SEDx)]'w  and [V I —2A—2dF(Jix)]"'w
converges to 0 uniformly on each bounded interval as 2| 0, and that
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dJ (x) is equal to [I—2A —2dF'(J,x)]"*. Consequently, (b) holds.

(¢) It is shown ([4]) that S’(0)x exists for each x € D(A) and is
equal to (A+F)z, and that S'(t)x (x € D(A)) is equal to (A-+F)S(t)x if
it exists. Let >0 and x € D(A). We have

[SE+h)x—S@)x]/ h=dSE)()S(h)x—x]/h

+ j {AS@®IS(h)z + 1 —0)x] — dSE @S (R)zw — 1/ h 6.

Letting h | 0, we have S'*(t)=dS{t)(@)[A+Flx for x e D(A). Since
dSt)(x)[A+ Flz is continuous in ¢, S@)x (x € D(A)) is a C'-solution to
(1.1).

(e) follows from the chain rule of derivation.

(f) and (g) U@+h,)w (w e D(A)) satisfies

Ult+ 1, Hyw— T(h)w+j: T(h—s)dF(S(E+)x)U(t+s, tw ds.

The second term of the right-hand side is differentiable at =0 for
any we< X and its derivative is dF'(S(t)x)w. Letting t=0, we have
(2.5). It is easy to check the uniform convergence. If w e D(A4), then
T(h)w is differentiable in #. Thus we have (f).

To prove Theorem 2, we shall mention the following lemma with-
out proof.

Lemma. Let f,(t) (xel) be a continuous X-valued function on
[0, T1 with £,(0)=0 and differentiable at t=0. Assume that the con-
vergence

SO =lim, , [ fu(R)—F.(O)]/h

is uniform in a € I and {|| f,(0)|} is bounded. Then we have
Fu@=tim 2 [ exp (—s/D.1.(5)ds,
210 0

where the convergence is uniform in « ¢ I for some = in(0, T].
Proof of Theorem 2. For 2>0, we set

Fa=27* j exp (—s/ASE)x—T(s)x]lds (xeX).

Since S(t)x — T(t)x is differentiable at t=0 for any x € X, we have Fx
=lim,,, F,z. It is clear that F, is continuously Gateaux differentiable
on X and its derivative is

dF (2)w=2-" L exp (—s/DAS(s)(@)w — T(s)w] ds.

Applying the lemma, we have that for each w € D(A)

G(x)w=lim,,, dF',(x)w uniformly in « on every compact set.
Since F, is Lipschitz continuous on X and D(A) is dense in X, G(x) is
extended to a bounded linear operator G(x) defined on X. It follows
that —G(x) is continuous on X in the strong operator topology and
G(x) is the Gateaux derivative of F' at .
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