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Introduction. The purpose of this note is to report some of the
properties of the first order differential operator"
.( 1 ) B--Dt+i(t/2+ x)D,
D----i3/3t, D----i3/3y, in a neighborhood o. the origin in R. Its
principal symbol is given by b=r/i(V/2/x), if (r, $,]) denotes the
dual variables of (t,x,y). Observe then {b, b}=-2it. Let S
={(t,x,y,r,,); r=O, V/2/x=O, +__t]0} and S={(t,x,y,r,,y);
=]=0, :/:0}. The characteristic set S of B .is connected and con-
sists of two. cones S and S.--S S- S, where. S={(0, 0, y, 0, , ])
]:/:0). A noteworthy act is that {b, b}/2i changes sign on S. near
S. In this sense, the operator B does not microlocally all in the
class of operators conventionally studied ([2], [3], [6]). However, we
can show the ollowing

Theorem 1. Let
( 2 ) BIu f, u e 2’(R3), f e ’(R3),
with supp f in a small neighborho.od of the origin. If (to, Xo, Yo, r0, 0,
70) e WF(u)\ WF(f), 70=/=0, is in a conic neighborhood F of (0, O, O, O, O,
0/10]), then r0=0 and (to, Xo, Yo, O, o, 2o) e S [3 S.

Note that the general theory [4] assures WF(u)\WF(f)cS so that
r0=0 is immediate. A proo. o Theorem 1 will be given in 1. We
will considerably make use o the particular orm o. the operator Bz.
In this respect, we. also include here a result on the equation Bu=O.
Let u e ’(R). Introduce the quantities"

t*(x, y u)= sup {t (t, x, y) e supp u), (x, y) e R,
y*(x, t; u)=sup {y (t, x, y) e supp u}, (x, t) e R,

adopting the convention sup=-. Replacing sup by in, we define
t.(x,y;u) and y.(x,t;u) with in=/c. Note t*(x,y;u) and
y*(x, t; u) (resp. t.(x, y u) and y.(x, t; u)) are upper (resp. lower)
semicontinuous.

Theorem 2. Let u e ’(R) satisfy Bu=O. Assume one of the
quantities t*(x, y u), y*(x, t; u), --t.(x, y; u) and --y.(x, t; u) take a
,finite local maximum. Then u vanishes identically.

A proo will be, given in 2.
Before ending Introductio.n, we briefly indicate our motivation in
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order to arouse (hopefully) a general interest. According to [1], [5],
[8], if a vector field X in Rn/l and a hypersurace H are in general
position, then we can introduce a local coordinate system x, ..., x,
x/, such that H is represented by x/=0 and X takes the orm of
one o the ollowing X, /=1, ..., n+ 1" X=Xn3//’"
/=l,...,n, andX/=3/,where3=3/x,]=l,...,n/l. Thissug-
gests that the pseudo-differential operator B with the principM symbol
--xl]+i (:/1x-$+$) (ln) is a typical local model of the
Calderon operator [7] associated to a second order elliptic oblique
derivative problem. Except [5], only the cases ln have thoroughly
been studied and no pseudo-differential approaches or the cases
n-1 seem to have ever been made [6], [7]. The operator (1) in this.
note is a still simplified microlocal model or l=n--1.

1. Proof o.f Theorem 1. First we introduce, an auxiliary unc-
tion (t, r, x)=[ (s/2/x)ds. When x_0, (t, r, x)0 i and only if

tr. Now let x0. Denote by I(t) the component, which contains
t, o the set of r or which fl(t, r, x)_O. I(t) reduces to a point when
and only when t=-/-2x and I;(-/--2x)={-/--2x}. MinI;(t)
=t when ltl/-2x and MaxI;(t)=t when Itl/-2x. I t=/--2x,
then t is an interior point o I(t). In (2), we may assume f and u
are both supported in a small neighborhood o (to, x0, Y0). We may
2urther suppose that both WF(u)and WF(f)are contained in F and
that there is a conic neighborhood F o.f (to, x0, Yo, 0, 0, ]0) such that

F WF(f)= and /’IF. Fourier transforming with respect to y
in (2), we get

(t, x, )-e(,,x)(r, x, )
(3)

=i j’ r jJ , )dad$ds,

where F is the Fourier transform of f. Assume Xo0. Let ]o)0.
I to:/:--/--2Xo, we. can take ro e I(to)\{to} such that or r=ro/p, t=
to+p, Iple small enough, r e I(t)\(t}. We may then assume u(r, x, y),
=0 or r_ro/e so that the. second term on the let hand side o (3)
vanishes. Let X and X be the projection t the fiber variables of F
and F, respectively. Note (a,,)eX if and only i [a]/Ila] or
some a0. Divide the inner integral on the right hand side o (3)
into one over X and another over X\X1. Since WF(f)F= and
(0, $o, ]o) e X, we see. (to, xo, Yo, 0, o, o) e WF(u). Similarly, unless to.
/-2Xo, (to, Xo, Y0, 0, $o, ]o) WF(f), o O, implies (to, Xo, Y0, 0, $o,
WF(u). On the other hand, when x0 or when x=0 and t:/:0,

it is clear that (t, x, y, O, , ]) WF(f) always implies (t, x, y, 0,
WF(u) when ]:/:0. This completes the proo o. Theorem 1.
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2. Pro.of of Theorem 2. Theorem 2 is an easy consequence of
the ollowing

Lemma. Let u e ’(R) satisfy the equatio.n Bu= O. Then
N(suppu)S. Furthermore, if (to, Xo, Yo) is a boundary point o.f
supp u, then there is a neighborhood U of this point such that each
component o.f U\supp u lies in the half spaces x>_Xo or x<_Xo.

In the above, N(supp u)is the whole normal set of supp u, i.e.,
the union o the normal set N(supp u) and the interior’ normal set
N(supp u) ([4] pp. 300-301). To. prove Lemma, let C be, as in [4], the
smallest subset o C(T*(R)\O) which contains all the C functions
vanishing on S and is closed under the Poisson bracket. Then C----
{r, (t/2/x), t,v}. Therefore, Theorem 8.6.6 in [4] implies the first
assertion. The second assertion is immediate from Proposition 8.5.8
in [4].
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