25. A Study of a Certain Non-Conventional Operator of Principal Type

By Atsushi Yoshikawa
Department of Mathematics, Hokkaido University
(Communicated by Kôsaku Yosida, m. J. A., March 12, 1984)

Introduction. The purpose of this note is to report some of the properties of the first order differential operator :

$$
\begin{equation*}
B^{I}=D_{t}+i\left(t^{2} / 2+x\right) D_{y} \tag{1}
\end{equation*}
$$

$D_{t}=-i \partial / \partial t, D_{v}=-i \partial / \partial y$, in a neighborhood of the origin in R^{3}. Its principal symbol is given by $b^{I}=\tau+i\left(t^{2} / 2+x\right) \eta$, if (τ, ξ, η) denotes the dual variables of (t, x, y). Observe then $\left\{b^{I}, \bar{b}^{I}\right\}=-2 i t \eta$. Let $S^{ \pm}$ $=\left\{(t, x, y, \tau, \xi, \eta) ; \tau=0, t^{2} / 2+x=0, \pm t_{\eta}<0\right\}$ and $S_{1}=\{(t, x, y, \tau, \xi, \eta) ;$ $\tau=\eta=0, \xi \neq 0\}$. The characteristic set S of B^{I} is connected and consists of two cones S_{1} and $S_{2}=S^{+} \cup S^{-} \cup S^{0}$, where $S^{0}=\{(0,0, y, 0, \xi, \eta)$; $\eta \neq 0\}$. A noteworthy fact is that $\left\{b^{I}, \bar{b}^{I}\right\} / 2 i$ changes sign on S_{2} near S^{0}. In this sense, the operator B^{r} does not microlocally fall in the class of operators conventionally studied ([2], [3], [6]). However, we can show the following

Theorem 1. Let
(2) $\quad B^{I} u=f, \quad u \in \mathscr{D}^{\prime}\left(\boldsymbol{R}^{3}\right), \quad f \in \mathcal{E}^{\prime}\left(\boldsymbol{R}^{3}\right)$, with supp f in a small neighborhood of the origin. If $\left(t_{0}, x_{0}, y_{0}, \tau_{0}, \xi_{0}\right.$, $\left.\eta_{0}\right) \in W F(u) \backslash W F(f), \eta_{0} \neq 0$, is in a conic neighborhood Γ of $(0,0,0,0,0$, $\left.\eta_{0} /\left|\eta_{0}\right|\right)$, then $\tau_{0}=0$ and $\left(t_{0}, x_{0}, y_{0}, 0, \xi_{0}, \eta_{0}\right) \in S^{+} \cup S^{0}$.

Note that the general theory [4] assures $W F(u) \backslash W F(f) \subset S$ so that $\tau_{0}=0$ is immediate. A proof of Theorem 1 will be given in $\S 1$. We will considerably make use of the particular form of the operator B^{I}. In this respect, we also include here a result on the equation $B^{I} u=0$. Let $u \in \mathscr{D}^{\prime}\left(\boldsymbol{R}^{3}\right)$. Introduce the quantities:

$$
\begin{array}{ll}
t^{*}(x, y ; u)=\sup \{t ;(t, x, y) \in \operatorname{supp} u\}, & (x, y) \in \boldsymbol{R}^{2}, \\
y^{*}(x, t ; u)=\sup \{y ;(t, x, y) \in \operatorname{supp} u\}, & (x, t) \in \boldsymbol{R}^{2},
\end{array}
$$

adopting the convention $\sup \phi=-\infty$. Replacing sup by inf, we define $t_{*}(x, y ; u)$ and $y_{*}(x, t ; u)$ with $\inf \phi=+\infty$. Note $t^{*}(x, y ; u)$ and $y^{*}(x, t ; u)$ (resp. $t_{*}(x, y ; u)$ and $y_{*}(x, t ; u)$) are upper (resp. lower) semicontinuous.

Theorem 2. Let $u \in \mathscr{D}^{\prime}\left(R^{3}\right)$ satisfy $B^{I} u=0$. Assume one of the quantities $t^{*}(x, y ; u), y^{*}(x, t ; u),-t_{*}(x, y ; u)$ and $-y_{*}(x, t ; u)$ take a finite local maximum. Then u vanishes identically.

A proof will be given in § 2.
Before ending Introduction, we briefly indicate our motivation in
order to arouse (hopefully) a general interest. According to [1], [5], [8], if a vector field X in R^{n+1} and a hypersurface H are in general position, then we can introduce a local coordinate system x_{1}, \cdots, x_{n}, x_{n+1}, such that H is represented by $x_{n+1}=0$ and X takes the form of one of the following $X_{l}, l=1, \cdots, n+1: X_{l}=x_{n} \partial_{n+1}+\cdots+x_{l} \partial_{l+1}+\partial_{l}$, $l=1, \cdots, n$, and $X_{n+1}=\partial_{n+1}$, where $\partial_{j}=\partial / \partial x_{j}, j=1, \cdots, n+1$. This suggests that the pseudo-differential operator B with the principal symbol $-x_{n}|\xi|+i\left(\sum_{j=l+1}^{n} x_{j-1} \xi_{j}+\xi_{l}\right)(l \leq n)$ is a typical local model of the Calderon operator [7] associated to a second order elliptic oblique derivative problem. Except [5], only the cases $l \geq n$ have thoroughly been studied and no pseudo-differential approaches for the cases $l \leq$ $n-1$ seem to have ever been made [6], [7]. The operator (1) in this note is a still simplified microlocal model for $l=n-1$.

1. Proof of Theorem 1. First we introduce an auxiliary function $\beta(t, r, x)=\int_{r}^{t}\left(s^{2} / 2+x\right) d s$. When $x \geq 0, \beta(t, r, x) \leq 0$ if and only if $t \leq r$. Now let $x<0$. Denote by $I_{0}^{-}(t)$ the component, which contains t, of the set of r for which $\beta(t, r, x) \leq 0$. $I_{0}^{-}(t)$ reduces to a point when and only when $t=-\sqrt{-2 x}$ and $I_{0}^{-}(-\sqrt{-2 x})=\{-\sqrt{-2 x}\}$. $\operatorname{Min} I_{0}^{-}(t)$ $=t$ when $|t|>\sqrt{-2 x}$ and $\operatorname{Max} I_{0}^{-}(t)=t$ when $|t|<\sqrt{-2 x}$. If $t=\sqrt{-2 x}$, then t is an interior point of $I_{0}^{-}(t)$. In (2), we may assume f and u are both supported in a small neighborhood of $\left(t_{0}, x_{0}, y_{0}\right)$. We may further suppose that both $W F(u)$ and $W F(f)$ are contained in Γ and that there is a conic neighborhood Γ_{1} of $\left(t_{0}, x_{0}, y_{0}, 0, \xi_{0}, \eta_{0}\right)$ such that $\Gamma_{1} \cap W F(f)=\phi$ and $\Gamma_{1} \subset \Gamma$. Fourier transforming with respect to y in (2), we get

$$
\begin{align*}
& \hat{u}(t, x, \eta)-e^{\beta(t, r, x) \eta} \hat{u}(r, x, \eta) \\
& \quad=i \int_{r}^{t} \iint e^{i(s \sigma+x \xi)+\beta(t, s, x) \eta} F(\sigma, \xi, \eta) d \sigma d \xi d s, \tag{3}
\end{align*}
$$

where F is the Fourier transform of f. Assume $x_{0}<0$. Let $\eta_{0}>0$. If $t_{0} \neq-\sqrt{-2 x_{0}}$, we can take $r_{0} \in I_{0}^{-}\left(t_{0}\right) \backslash\left\{t_{0}\right\}$ such that for $r=r_{0}+\rho, t=$ $t_{0}+\rho,|\rho|<\varepsilon_{1}$ small enough, $r \in I_{0}^{-}(t) \backslash\{t\}$. We may then assume $u(r, x, y)$ $=0$ for $r \leq r_{0}+\varepsilon_{1}$ so that the second term on the left hand side of (3) vanishes. Let Σ and Σ_{1} be the projection to the fiber variables of Γ and Γ_{1}, respectively. Note $(\sigma, \xi, \eta) \in \Sigma$ if and only if $|\sigma|+|\xi|<a \eta$ for some $a>0$. Divide the inner integral on the right hand side of (3) into one over Σ_{1} and another over $\Sigma \backslash \Sigma_{1}$. Since $W F(f) \cap \Gamma_{1}=\phi$ and $\left(0, \xi_{0}, \eta_{0}\right) \in \Sigma_{1}$, we see $\left(t_{0}, x_{0}, y_{0}, 0, \xi_{0}, \eta_{0}\right) \notin W F(u)$. Similarly, unless t_{0}. $=\sqrt{-2 x_{0}}, \quad\left(t_{0}, x_{0}, y_{0}, 0, \xi_{0}, \eta_{0}\right) \notin W F(f), \quad \eta_{0}<0$, implies $\left(t_{0}, x_{0}, y_{0}, 0, \xi_{0}, \eta_{0}\right)$ $\notin W F(u)$. On the other hand, when $x>0$ or when $x=0$ and $t \neq 0$, it is clear that $(t, x, y, 0, \xi, \eta) \notin W F(f)$ always implies $(t, x, y, 0, \xi, \eta)$. $\notin W F(u)$ when $\eta \neq 0$. This completes the proof of Theorem 1 .
2. Proof of Theorem 2. Theorem 2 is an easy consequence of the following

Lemma. Let $u \in \mathscr{D}^{\prime}\left(\boldsymbol{R}^{3}\right)$ satisfy the equation $B^{I} u=0$. Then $N(\operatorname{supp} u) \subset S_{1}$. Furthermore, if $\left(t_{0}, x_{0}, y_{0}\right)$ is a boundary point of supp u, then there is a neighborhood U of this point such that each component of $U \backslash \operatorname{supp} u$ lies in the half spaces $x \geq x_{0}$ or $x \leq x_{0}$.

In the above, $N(\operatorname{supp} u)$ is the whole normal set of $\operatorname{supp} u$, i.e., the union of the normal set $N_{e}(\operatorname{supp} u)$ and the interior normal set $N_{i}(\operatorname{supp} u)([4] \mathrm{pp} .300-301)$. To prove Lemma, let \mathcal{C} be, as in [4], the smallest subset of $C^{\infty}\left(T^{*}\left(\boldsymbol{R}^{3}\right) \backslash 0\right)$ which contains all the C^{∞} functions vanishing on S and is closed under the Poisson bracket. Then $\mathcal{C}=$ $\left\{\tau,\left(t^{2} / 2+x\right) \eta, t \eta, \eta\right\}$. Therefore, Theorem 8.6.6 in [4] implies the first assertion. The second assertion is immediate from Proposition 8.5.8 in [4].

References

[1] V. I. Arnol'd: Local problems of analysis. Moscow Univ. Math. Bull., 25, 77-80 (1970).
[2] J. Duistermaat and J. Sjostrand: A global construction for pseudo-differential operators with non-involutive characteristics. Invent. math., 20, 209-225 (1973).
[3] L. Hörmander: Subelliptic operators. Sem. on Singularities of Solutions of Linear PDE. ed. by L. Hörmander, Ann. Math. Studies, no. 91, Princeton University Press, pp. 127-208 (1979).
[4] --: The Analysis of Linear Partial Differential Operators I. Springer-V. (1983).
[5] V. G. Maz'ja: On a degenerating problem with directional derivative. Math. USSR Sbornik, 16, 429-469 (1972).
[6] A. Melin and J. Sjostrand: Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem. Comm. in PDE, 1, 313-400 (1976).
[7] F. Treves: Introduction to Pseudodifferential and Fourier Operators. vol. 1, Plenum (1980).
[8] S. M. Vishik: Vector fields in the neighborhood of the boundary of a manifold. Moscow Univ. Math. Bull., 27, 13-19 (1972).

