No. 7] Proc. Japan Acad., 60, Ser. A (1984) 273

76. On Totally Multiplicative Signatures of
Natural Numbers

By Masaki Supo
Faculty of Engineering, Seikei University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1984)

1. Introduction. Let N be the set of all natural numbers and
¢ a mapping from N to the set {41} satisfying the condition o(abd)
=g(a)o(b) for all @, b e N. We call such a mapping ¢ o totally multi-
plicative signature. We have ¢(a®)=1, particularly ¢(1)=1. The
constant signature o(a)=1 for all a ¢ N is called trivial. In the fol-
lowing, we are concerned with non-trivial totally multiplicative signa-
tures, called simply signatures and denoted by ¢. Let II(¢) be the set
of all primes p, for which ¢(p)=—1. o is obviously determined by
II(¢). When II(¢) coincides with the set of all primes, then ¢ is
Liouville’s function 2. S. Chowla conjectured that, given any finite
sequence ¢, - -+, &, e,==+1, then 2(x+m)=¢,A<m<g) will have
infinitely many solutions (cf. [1], [5]). In [4], I. Schur and G. Schur
proved that the followings are the only signatures for which o(x)=
g(x+1)=0(x+2)=1 does not occur.

I. If ¢(3)=1, then oBn+1)=1, ¢Bn+2)=—1, o¢(8*t)=0c(t) for all
n, k, t with (t,3)=1.

II. If 6B)=—1, then o@Bni+1)=1, c@Bn+2)=—-1, (8%
=(—1*g(t) for all n, k, t with (¢,3)=1.

Furthermore they proved that o(x)=1, o(x+1)=—1, o(x+2)=1
has always a solution for any o.

In this paper we prove the following theorem.

Theorem. Let ¢ be a totally multiplicative signature for which
11(o) contains at least two primes. Then

(1) o(@)=—1, o(x+1)=—1 has infinitely many solutions,

(ii) o@)=—-1, olx+1)=1, o(x+2)=—1 has a solution and if
o(2)=1, it has infinitely many solutions.

Our result contains a special case of Chowla’s conjecture.

Henceforth we simply write either (n). or (n)_ instead of a(n)=1
or ¢(n)= —1, respectively.

2. Proof of Theorem. Let p, ¢ be the smallest and the next
smallest elements of 77(¢). Then we have 1<p<q, (p, ¢)=1.

Proof of (). The congruence gx=1 (mod p) has a unique solu-
tion x, in the interval 1<x<p—1. So there exists r € N such that
qr,=pr-+1. Similarly the congruence qy=—1 (mod p) has a unique
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solution y, in the interval 1<y <p—1 and we have s € N such that qy,
=ps—1.

We now consider two pairs of two consecutive natural numbers
qr,—1=p7, q,; qY,, qYo+1=ps. As 1<z, ¥, <p—1, it is easy to see
that 1<r<q, 1<s<q. Therefore, from the definition of p and ¢, if
pyr, we have (r), and if pfs, we obtain (s),. So according as either
pfr or pks, we have either (qx,—1)_, (q%,)_ or (q¥,)-, (qy,+1)_, respec-
tively. Therefore we have only to show that at least one of the two
numbers 7, s is not divisible by p.

Suppose both p|r and p|s. By the equalities qx,=pr+1, qy,
=ps—1, we have q(z,+y)=pr+s). By our assumption, we have
p|(r+s) and so p*|q(@,+¥,). But, as (p, 9)=1, we have p*|(x,+¥,)-
This contradicts the fact that 2<x,+y,<2p—2<p*. This assures an
exigtence of a natural number m with (m)_, (m+1)_.

From the above proof we see that at least one of the linear equa-
tions px—qy=+1 has a solution x=wu, y=v such that (pu)_, (qv)_,
I<u<qg—1, 1<v<p—1, and pfu.

We consider the diophantine equation (pu)x*—(qv)y*=+1, where
the sign corresponds to the linear equation which has the solution
r=u, y="2.

The above quadratic equation has integral coefficients and an inte-
gral solution x=y=1. Its discriminant d is equal to 4pquv. Sod is
positive and is not a square number since ¢*fd. Therefore this equa-
tion has infinitely many integral solutions (cf. [3], p. 150, Th. 8-10),
and we have (pux?)_, (qvy®)_.

Proof of (ii). Case p=2. First we consider the case (3),. Then
@,, 2_, 8),. Therefore if (7)., we obtain (6)_, (7)., (8).. So sup-
pose (7)_. If (5),, we have (8)_, (9),, (10)_. So suppose moreover
(5)_. If (13)_, then (13)_, (14),, (15)_. Therefore suppose again (13),.
Then we obtain (24)_, (25),, (26)_. This assures that any signed
sequence (1),, (2)_, 3)., - - - of natural numbers contains a triple —,
+, — of consecutive signs.

Similarly we can also prove that there exists a natural number n
such that (n)_, (n+1),, n+2)_ in the case (3)_.

These prove (ii) of Theorem in the case p=2.

Case p>2. Then (2),. From now on we assume that there are
no three consecutive natural numbers n, n+1, n+2 such that (n)_,
(n+1),, n+2)_.

By the part (i) of Theorem, there exist infinitely many natural
numbers m which satisfy (m)_, m+1)_. So for each m, as (2),, we
have 2m)_, @(m+1))_. Therefore by the above assumption, we have
@m)_, @Cm+1)_, Cm+1))_. Repeating this process 2k times, we can
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find 2°*+1 consecutive natural numbers 2**m, 2*m+1, - -, 2**(m+1)
such that their g-values are —1. So we will obtain a contradiction if

we can find a square number among these 2**+1 numbers for a suf-
ficiently large k.

Consider the interval [2*vm , 2*¥m—+1]. If k is sufficiently large,
we obtain 2*y/m-+1—2%y/m >1. So there exists a natural number &
such that 2/m <h<2*/m+1. So we have 2**m<h*<2*(m-+1).
This is a contradiction. Therefore for each m with (m)_., (m+1)_,
we can find a natural number ¢g with (¢)_, (¢9+1),, (¢9+2)_, which
proves (ii).

Remark. It seems difficult to find necessary and sufficient condi-
tions which assure the existence of a natural number m with (m)_,
(m+1)_, (m+2)_.
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