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1. Let L= L be a union o a finite number o simple, smooth
and bounded open arcs in l, where any two o L have neither an
interior point nor an end point in common. Denote points in R by
x, y, etc., and the distance between x and y by Ix-yl. Let 5L--{x*}
be the set of end points x* of L, and set L=L U 3L. Suppose C= C(L),
C--C(L)=(L), C=C(L)-(L), etc., represent the unction spaces
on L in the usual sense.

Assume (x, y)=(1/4i)H)(klx--y ), where H0() is the zero-th order
Hankel unction o the second kind, and k is a constant such as Im
<_0. q is a undamental solution of the Helmholtz equation.

We shall define an integral operator by

( 1 Yr--.IL (x, y)r(y)ds

and denote the inverse of by -1. The purpose of this work is to
study about the continuity o V-.

Since (x, y) has only a log singularity at x=y, ’qf maps C(L)into
C(f,). Furthermore, as was proved in the previous paper [1],
is equivalent to r--0. However, as is implied by the Riemann-
Lebesgue theorem, ’V -1 is not necessarily continuous. For example,
for x =/= a, we have: (x, y)c(smy dy=()(x, a) sin ma--() : O(x, y)sinmy dy.

3y

The right hand side exists in the sense o Cauchy’s principal value o
integral, which tends to zero as m-c. However, ccs mx does not
tend to zero in C([0, a]). In contrast with this, we shall show that- is continuous if is considered t map -’.

2. Definition 1. Set (x, y)-0(x, y)-(x, y), where is
the one defined above, and set

(x, y) q_ (x, z)dsz,

and

kEm(x, y)---- E’-l(x, z)dsz, (m-- 1, 2, ),

}ds is the integration with respect to the arc element ds
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Of a point z till a point y e L, while 3/3s is the tangential differentia-
tion at x.

Lemma 1.
(2) (x, y)=c,,.loglx-yl/f(x, y)lx-y .loglx-yl/g(x, y),
where f(x, y), g,,(x, y)eC(LL), c--(--1)/2, and m--l, 2, ....

Proof. For m-0, (2) is obtained from the expansion formula
for H(0). For m-m, (2) is shown to hold by mathematical induction.

Lemma 2.

( 3 3(x’ y) --(x, y).s
Proof. The proof is straightforward if one note that (x, y)

has only a log singularity.

Definition 2. For a e C, set 5=a. As usual, m-th order de-
rivatives are described as

a(’)(x)= da(x) and ()(x)= d(x).
/ ds ds

Note that a(’)(x)=Fa()(x) is different rom ()(x).
Definition 3. --{; --a, a C}.
Theorem 1. For va C, we have

( 4 5(’)(x) (--1). (x, y)a()(y)ds C(L).
L

Proof. By integrating by parts,

(x) (x, y)a(y)ds=(--1). (x, y)a(y)ds

(-- 1).[ (x, y)a()(y)ds.

Consequently, by Lemma 2, we have (4).
Corollary 1. mapsCintoC. That is, 2cC.
Note. If r e C, then =r e C. However, does not necessarily

belong to C.
Suppose L’ is a pertinent union of open arcs such that C=L L’

is a closed contour, or a union of closed contours.
Theorem 2. For vv C(L) and v e Co(L), we have the following

identity

(5) (x)ds[r(x)/K(x, y)r(y)dsl--(x)dsx 2(x, y)(y)ds.

Here we have set --r, and

(6) K(x y)-4[I,-(x, z) (x, z) (y, z)dszl.3n-()t-i;)(Y’z)ds--c-t(X) n(z

2(x, y)-----4 3_(x,_y_.)_
n(x)n(y)

where /3n(x) denotes the differentiation along the normal n of L at x.

Note. (5) holds as well if r is piecewise continuous on L.
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Proo/. Let
O(x, y)v(x)= (x, y)r(y)ds, w(x) (y)ds.
On(y)

’Then, (5) is derived by the Green’s second identity applied to v and w
in the domain exterior to C=L L’.

As is well known, or v e C(L), there exists a sequence e e C(L)
such that ]--]=supe(x)--e(x)0 when m.

Theorem . Let be piecewise continuous on L, and set =.
Then, the following identity holds in the sense of a distribution defined
.on C(L),

( 7 r(x)+[ K(x, y)r(y)ds-lim [ (x, y)(y)ds.
L L

Proof. The right hand member o (5) is rewritten as

because tends uniformly to , 2(x, y)=2(y, x) and the order of inte-
grations is interchangeable for e C=. Consequently, by virtue of
the completeness of the space ’, we have (7).

Corollary. For va C:, the following identity holds in the sense

of distribution,

S a(x)+[ K(x, y)a(y)ds--[ 2(x, y)5(y)ds,
JL L

where =a e C.
Note. K(x, y) and 2(x, y) are not necessarily bounded at an end

point x* of L.
Definition 4. For vp0, set L,=(x; x e L, x--x*p, x* e 3L},

and L L-- L,.
Lemma . For v e C(L), let e e C(L) be the sequence men-

tioned above, and set
3w(x) 3(x, y) (y)ds.
3n(x) 3n(x)3n(y)

If lim w/n=O holds at Vx e L, for suciently small p, then, (x)=0

holds for Vx e L.
Proof. This is proved by the study o the behavior o w/n

near an end point x*. However, the detailed proof of this important
lemma is too long to describe here.

Note. Though the kernel K(x,y) defined by (6) is not bounded
at end points x*, it is continuous with respect to x and y if x, y e L,.
That is, the operator

Kf K(x, y)(y)ds

is completely continuous when it maps C(Lo)C(Lo).
Theorem 4. Set
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P
(I+ K)r---- r(x) + | K(x, y)r(y) ds, x e L,

dL

then, the inverse (I+K)-I C(L,)-+C(L) exists and is continuous.

Proof. For r C(L,), we have (7). If (I+K)r=0, then

lim 3w _0

ollows from the right hand side o (7). Consequently, by Lemma 3,
we have (x)--0. While, as was proved in [1], --0 is equivalent to
T--0.

3. With help of these results obtained above, we can prove the
/ollowing theorem.

Definition 5. a-+0 in meansl]al]=supla()l-Oiorm=O, 1,2,,... Similarly, --0 in ’ means I1() II--0 or m--0, 1, 2,
Theorem 5. d--0 in aO in .
Proof. By virtue o Theorem 1, it is easy to see that a--0 in

@--0 in ’. The converse is also true. A brief proof is as follows
Let p0 be an arbitrarily fixed constant, and set
suppacLJ. For a,, (8) holds, and we. have., by Theorem 4,
a=(I+K)-b. Consequently, ][a[]--0 follows rom [[-0. Assume
that () [-0 implies [[a(Pt[--O or p=O, 1, ..., m--1. Then, with help
of Theorem 1, it is proved that, when [() 0, we have

On the. other hand, from (8), we have

e’ (I+K)-. 2(x, y)a()d.

Consequently, II--,0 follows from ( II---,0, P- 0, 1,
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