66. Continuity of the Inverse of a Certain Integral Operator

By Yoshio HAYASHI

College of Science and Technology, Nihon University (Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1984)

§ 1. Let $L=\bigcup L_j$ be a union of a finite number of simple, smooth and bounded open arcs in \mathbf{R}^2 , where any two of L_j have neither an interior point nor an end point in common. Denote points in \mathbf{R}^2 by x,y, etc., and the distance between x and y by |x-y|. Let $\partial L = \{x^*\}$ be the set of end points x^* of L, and set $\overline{L} = L \cup \partial L$. Suppose $C = C(\overline{L})$, $C^{\infty} = C^{\infty}(\overline{L}) = \mathcal{E}(\overline{L})$, $C^{\infty} = C^{\infty}(\overline{L}) = \mathcal{D}(\overline{L})$, etc., represent the function spaces on \overline{L} in the usual sense.

Assume $\psi(x,y) = (1/4i)H_0^{(2)}(k|x-y|)$, where $H_0^{(2)}$ is the zero-th order Hankel function of the second kind, and k is a constant such as Im $k \le 0$. ψ is a fundamental solution of the Helmholtz equation.

We shall define an integral operator Ψ by

and denote the inverse of Ψ by Ψ^{-1} . The purpose of this work is to study about the continuity of Ψ^{-1} .

Since $\psi(x,y)$ has only a log singularity at x=y, Ψ maps $C(\bar{L})$ into $C(\bar{L})$. Furthermore, as was proved in the previous paper [1], $\Psi \tau = 0$ is equivalent to $\tau = 0$. However, as is implied by the Riemann-Lebesgue theorem, Ψ^{-1} is not necessarily continuous. For example, for $x \neq a$, we have

$$\int_0^a \psi(x,y) \cos my \, \mathrm{d}y = \left(\frac{1}{m}\right) \psi(x,a) \sin ma - \left(\frac{1}{m}\right) \int_0^a \frac{\partial \psi(x,y)}{\partial y} \sin my \, \mathrm{d}y.$$

The right hand side exists in the sense of Cauchy's principal value of integral, which tends to zero as $m\to\infty$. However, $\cos mx$ does not tend to zero in C([0,a]). In contrast with this, we shall show that Ψ^{-1} is continuous if Ψ is considered to map $\mathcal{D}\to\mathcal{E}$.

§ 2. Definition 1. Set $\psi(x,y) = \psi_0(x,y) = \psi^{[0]}(x,y)$, where ψ is the one defined above, and set

$$\psi_m(x,y) = \int_{-\infty}^{s_y} \psi_{m-1}(x,z) ds_z,$$

and

$$\psi^{\llbracket m
rbrack}(x,y) = rac{\partial}{\partial s_x} \int^{s_y} \psi^{\llbracket m-1
brack}(x,z) ds_z, \qquad (m=1,2,\cdots),$$

where $\int_{-s_z}^{s_y} \{-\} ds_z$ is the integration with respect to the arc element ds_z

of a point z till a point $y \in L$, while $\partial/\partial s_x$ is the tangential differentiation at x.

Lemma 1.

(2) $\psi^{\text{[m]}}(x,y) = c_m \cdot \log|x-y| + f_m(x,y)|x-y| \cdot \log|x-y| + g_m(x,y),$ where $f_m(x,y)$, $g_m(x,y) \in C^2(L \times L)$, $c_m = (-1)^m/2\pi$, and $m = 1, 2, \cdots$.

Proof. For m=0, (2) is obtained from the expansion formula for $H_0^{(2)}$. For m=m, (2) is shown to hold by mathematical induction.

Lemma 2.

(3)
$$\frac{\partial^m \psi_m(x,y)}{\partial s^m} = \psi^{[m]}(x,y).$$

Proof. The proof is straightforward if one note that $\psi^{[m]}(x, y)$ has only a log singularity.

Definition 2. For $\sigma \in C_0^{\infty}$, set $\hat{\sigma} = \Psi \sigma$. As usual, *m*-th order derivatives are described as

$$\sigma^{\scriptscriptstyle(m)}(x) = rac{d^{\scriptscriptstyle m}\sigma(x)}{ds^{\scriptscriptstyle m}_x}$$
 and $\hat{\sigma}^{\scriptscriptstyle(m)}(x) = rac{d^{\scriptscriptstyle m}\hat{\sigma}(x)}{ds^{\scriptscriptstyle m}_x}$.

Note that $\widehat{\sigma^{(m)}}(x) = \Psi \sigma^{(m)}(x)$ is different from $\widehat{\sigma}^{(m)}(x)$.

Definition 3. $\hat{\Sigma} = \{\hat{\sigma} ; \hat{\sigma} = \Psi \sigma, \sigma \in C_0^{\infty} \}$.

Theorem 1. For $\forall \sigma \in C_0^{\infty}$, we have

$$\hat{\sigma}^{\scriptscriptstyle{(m)}}(x) \!=\! (-1)^m \cdot \! \int_L \psi^{\scriptscriptstyle{\llbracket m \rrbracket}}(x,y) \sigma^{\scriptscriptstyle{(m)}}(y) ds_y \in C(ar{L}).$$

Proof. By integrating by parts,

$$\hat{\sigma}(x) = \int_{L} \psi(x, y) \sigma(y) \, ds_{y} = (-1) \cdot \int_{L} \psi_{1}(x, y) \sigma^{(1)}(y) \, ds_{y}$$

$$= \dots = (-1)^{m} \cdot \int_{L} \psi_{m}(x, y) \sigma^{(m)}(y) \, ds_{y}.$$

Consequently, by Lemma 2, we have (4).

Corollary 1. Ψ maps C_0^{∞} into C^{∞} . That is, $\hat{\Sigma} \subset C^{\infty}$.

Note. If $\tau \in C$, then $\hat{\tau} = \Psi \tau \in C$. However, $\hat{\tau}$ does not necessarily belong to C^2 .

Suppose L' is a pertinent union of open arcs such that $C = \overline{L} \cup L'$ is a closed contour, or a union of closed contours.

Theorem 2. For $\forall \tau \in C(\overline{L})$ and $\forall \phi \in C_0^2(\overline{L})$, we have the following identity:

$$(5) \int_{L} \phi(x) ds_{x} \left[\tau(x) + \int_{L} K(x, y) \tau(y) ds_{y} \right] = \int_{L} \hat{\tau}(x) ds_{x} \int_{L} \lambda(x, y) \phi(y) ds_{y}.$$

Here we have set $\hat{\tau} = \Psi \tau$, and

(6)
$$K(x,y) = 4 \left[\int_{L'} \frac{\partial^2 \psi(x,z)}{\partial n(x) \partial n(z)} \psi(y,z) ds_z - \int_{C} \frac{\partial \psi(x,z)}{\partial n(x)} \frac{\partial \psi(y,z)}{\partial n(z)} ds_z \right].$$

$$\lambda(x,y) = -4 \frac{\partial^2 \psi(x,y)}{\partial n(x) \partial n(y)}.$$

where $\partial/\partial n(x)$ denotes the differentiation along the normal n of L at x. Note. (5) holds as well if τ is piecewise continuous on L. Proof. Let

$$v(x) = \int_{\scriptscriptstyle L} \psi(x,y) au(y) ds_{\scriptscriptstyle y}, \qquad w(x) = \int_{\scriptscriptstyle L} rac{\partial \psi(x,y)}{\partial n(y)} \, \phi(y) ds_{\scriptscriptstyle y}.$$

Then, (5) is derived by the Green's second identity applied to v and w in the domain exterior to $C = \overline{L} \cup L'$.

As is well known, for $orall \hat{ au} \in C(\bar{L})$, there exists a sequence $\hat{\tau}_m \in C^{\infty}(\bar{L})$ such that $\|\hat{\tau} - \hat{\tau}_m\| = \sup_{x \in L} |\hat{\tau}(x) - \hat{\tau}_m(x)| \to 0$ when $m \to \infty$.

Theorem 3. Let τ be piecewise continuous on L, and set $\hat{\tau} = \Psi \tau$. Then, the following identity holds in the sense of a distribution defined on $\mathcal{D} = C_0^{\infty}(L)$,

(7)
$$\tau(x) + \int_{L} K(x, y) \tau(y) ds_{y} = \lim_{m \to \infty} \int_{L} \lambda(x, y) \hat{\tau}_{m}(y) ds_{y}.$$

Proof. The right hand member of (5) is rewritten as

$$\lim \int_{L} \phi(x) ds_{x} \int_{L} \lambda(x, y) \hat{\tau}_{m}(y) ds_{y},$$

because $\hat{\tau}_m$ tends uniformly to $\hat{\tau}$, $\lambda(x,y) = \lambda(y,x)$ and the order of integrations is interchangeable for $\hat{\tau}_m \in C^{\infty}$. Consequently, by virtue of the completeness of the space \mathcal{D}' , we have (7).

Corollary. For $\forall \sigma \in C_0^{\infty}$, the following identity holds in the sense of distribution,

(8)
$$\sigma(x) + \int_{L} K(x, y) \sigma(y) ds_{y} = \int_{L} \lambda(x, y) \hat{\sigma}(y) ds_{y},$$

where $\hat{\sigma} = \Psi \sigma \in C^{\infty}$.

Note. K(x, y) and $\lambda(x, y)$ are not necessarily bounded at an end point x^* of L.

Definition 4. For $\forall \rho > 0$, set $L_{\rho} = \{x ; x \in L, |x - x^*| \geq \rho, x^* \in \partial L\}$, and $L_{\rho}^c = L - L_{\rho}$.

Lemma 3. For $\forall \hat{\tau} \in C(\bar{L})$, let $\hat{\tau}_m \in C^{\infty}(\bar{L})$ be the sequence mentioned above, and set

$$\frac{\partial w_{\scriptscriptstyle m}(x)}{\partial n(x)} = \int_{\scriptscriptstyle L} \frac{\partial^2 \psi(x,y)}{\partial n(x)\partial n(y)} \hat{\tau}_{\scriptscriptstyle m}(y) ds_{\scriptscriptstyle y}.$$

If $\lim_{m\to\infty} \partial w_m/\partial n = 0$ holds at $\forall x \in L_\rho$ for sufficiently small ρ , then, $\hat{\tau}(x) = 0$ holds for $\forall x \in \bar{L}$.

Proof. This is proved by the study of the behavior of $\partial w_m/\partial n$ near an end point x^* . However, the detailed proof of this important lemma is too long to describe here.

Note. Though the kernel K(x, y) defined by (6) is not bounded at end points x^* , it is continuous with respect to x and y if $x, y \in L_{\rho}$. That is, the operator

$$K\phi \equiv \int_L K(x,y)\phi(y)ds_y$$

is completely continuous when it maps $C(L_{\rho}) \rightarrow C(L_{\rho})$.

Theorem 4. Set

$$(I+K) au \equiv au(x) + \int_{\mathbb{T}} K(x,y) au(y) \, ds_y, \qquad x \in L_{
ho},$$

then, the inverse $(I+K)^{-1}$; $C(L_a) \rightarrow C(L_a)$ exists and is continuous.

Proof. For $\tau \in C(L_{\rho})$, we have (7). If $(I+K)\tau = 0$, then

$$\lim_{m\to\infty}\frac{\partial w_m}{\partial n}=0$$

follows from the right hand side of (7). Consequently, by Lemma 3, we have $\hat{\tau}(x)=0$. While, as was proved in [1], $\hat{\tau}=0$ is equivalent to $\tau=0$.

§ 3. With help of these results obtained above, we can prove the following theorem.

Definition 5. $\sigma \to 0$ in \mathcal{D} means $\|\sigma^{(m)}\| = \sup |\sigma^{(m)}| \to 0$ for $m = 0, 1, 2, \dots$. Similarly, $\hat{\sigma} \to 0$ in \mathcal{E} means $\|\hat{\sigma}^{(m)}\| \to 0$ for $m = 0, 1, 2, \dots$.

Theorem 5. $\hat{\sigma} \rightarrow 0$ in $\mathcal{E} \rightleftharpoons \sigma \rightarrow 0$ in \mathcal{D} .

Proof. By virtue of Theorem 1, it is easy to see that $\sigma \to 0$ in $\mathcal{D} \Rightarrow \hat{\sigma} \to 0$ in \mathcal{E} . The converse is also true. A brief proof is as follows; Let $\rho > 0$ be an arbitrarily fixed constant, and set $\mathcal{D}_{\rho} = \{\sigma : \sigma \in \mathcal{D}_{\rho}, \sup \sigma \subset L_{\rho}\}$. For $\sigma \in \mathcal{D}_{\rho}$, (8) holds, and we have, by Theorem 4, $\sigma = (I+K)^{-1}\hat{\sigma}$. Consequently, $\|\sigma\| \to 0$ follows from $\|\hat{\sigma}\| \to 0$. Assume that $\|\hat{\sigma}^{(p)}\| \to 0$ implies $\|\sigma^{(p)}\| \to 0$ for $p = 0, 1, \dots, m-1$. Then, with help of Theorem 1, it is proved that, when $\|\hat{\sigma}^{(m)}\| \to 0$, we have

$$\left\|\int_{L}\lambda(x,y)\widehat{\sigma^{(m)}(y)}ds_{y}\right\|\rightarrow0.$$

On the other hand, from (8), we have

$$\sigma^{\scriptscriptstyle (m)} = (I+K)^{\scriptscriptstyle -1} \cdot \int_L \lambda(x,y) \widehat{\sigma^{\scriptscriptstyle (m)}(y)} ds_y.$$

Consequently, $\|\sigma^{(m)}\| \to 0$ follows from $\|\hat{\sigma}^{(p)}\| \to 0$, $p=0,1,\dots,m$.

Reference

[1] Hayashi, Y.: The Dirichlet problem for the two-dimensional Helmholtz equation for an open boundary. J. Math. Anal. Appl., 44, 489-530 (1973).