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Integral Operator

By Yoshio HAYASHI
College of Science and Technology, Nihon University

(Communicated by Koésaku YOSIDA, M. J. A., Sept. 12, 1984)

§1. Let L= L, be a union of a finite number of simple, smooth
and bounded open arcs in R?, where any two of L, have neither an
interior point nor an end point in common. Denote points in R? by
x,y, etc., and the distance between x and y by |z —y|. Let 0L={x*}
be the set of end points z* of L, and set L=LUdL. Suppose C=C(L),
C>=C~(L)=EWL), Cy=Cs(L)=9D(L), etc., represent the function spaces
on L in the usual sense.

Assume (x, y)= A /40)HP (k| —y|), where H{® is the zero-th order
Hankel function of the second kind, and k is a constant such as Im k
<0. 4 is a fundamental solution of the Helmholtz equation.

We shall define an integral operator ¥ by

(1) wrzL Wz, We@ds,

and denote the inverse of ¥ by ¥-'. The purpose of this work is to
study about the continuity of ¥ -'.

Since (2, ¥) has only a log singularity at x=y, ¥ maps C(L) into
C(L). Furthermore, as was proved in the previous paper [1], ¥'z=0
is equivalent to z=0. However, as is implied by the Riemann-
Lebesgue theorem, ¥"-! is not necessarily continuous. For example,
for x+a, we have

r (2, y) cos my dy = <l)«y(x, a) sin ma — (l> oy, y) sin my dy.
0 m m/ Jo oy
The right hand side exists in the sense of Cauchy’s principal value of
integral, which tends to zero as m—oco. However, cos mx does not
tend to zero in C([0,a]). In contrast with this, we shall show that
¥-* ig continuous if ¥ is considered to map 9—&.

§2. Definition 1. Set y(x, ¥)=1(x, y) ="z, y), where + is

the one defined above, and set

\,fm(xr S‘/)ZJ% ‘l’mﬁ(x) z)dsz?

and
1l/'[m](x, ?/)‘—“aji;f J“?y \!/‘[m~1](x, z)dsz, (m:l, 2’ .. .),
Sy

Wwhere r/{ lds, is the integration with respect to the arc element ds,
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of a point z till a point y € L, while 9/3s, is the tangential differentia-
tion at z.

Lemma 1.
(2) "™, p=c, log|lx—y|+ fn(x, v) |x—y\ log|x—y|+ g.(z, ¥),
where f,(x,y), 9.(x,y) e CLX L), ¢,=(—1)"/2z, and m=1,2, - - -.

Proof. For m=0, (2) is obtained from the expansion formula
for HP. For m=m, (2) is shown to hold by mathematical induction.

Lemma 2.
(3) "%, Y) _ v, ).

os™

Proof. The proof is straightforward if one note that ™ (x, y)

has only a log singularity.

Definition 2. For ¢e Cy, set 6=¥¢. As usual, m-th order de-
rivatives are described as

s (@)=L IE)  anqd gm(g)= @)
N dsm dsy
Note that ¢™(x)=¥¢™ () is different from 6™ (x).
Definition 3. 3={6;6="0, 0 € C5}.
Theorem 1. For Yo e Cy, we have

(4) 5@ = (=1 4, o™ @)ds, € OL).
L
Proof. By integrating by parts,

o) = f e, Yoy ds, =(—1) j (2, 1o®@)ds,

== D e, e s,
Consequently, by Lemma 2, we have (4). i
Corollary 1. ¥ maps C7 into C*. That is, 2 CC".

Note. If zeC, then t=¥rcC. However, ¢ does not necessarily
belong to C®°.

Suppose L/ is a pertinent union of open arcs such that C=LUL’
is a closed contour, or a union of closed contours.

Theorem 2. For Vze C(L) and ¥4 € C¥(L), we have the following
identity ;
(5) L ¢(x)d3z[f(x)+f K(x, y)r(y)dsy] =I #(x)ds, L Az, Y)g(y)ds,.
L L
Here we have set :=Ur, and
"y (x, 2) j ov(x,2) ov(y,?) ]
6 K(x, =4[ B A tha ,2)ds,— | OV el OVRS S0 g .
(6) @)  on(x)on(z) v, 2) c  on(x) on(z)
"r(, y)
Az, y)=—4 ~ "0 20
@9 an(x)on(y)
where 3/on(x) denotes the differentiation along the normaln of L at x.
Note. (5) holds as well if ¢ is piecewise continuous on L.
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Proof. Let

v@=[ v, wewis,  w@=[ OV ),
L L on(y)
Then, (5) is derived by the Green’s second identity applied to v and w
in the domain exterior to C=LUL’.

As is well known, for ¥# e C(L), there exists a sequence #, € C=(LL)
such that 1|1‘-—%m||=s12p |#(x) — £, (x)|—>0 when m—oo.

Theorem 3. Let  be piecewise continuous on L, and set +=¥r.

Then, the following identity holds in the sense of a distribution defined
on D=Cg (L),

(7) r(x)+jL K(@, y)e(y)ds,=lim | 2z, 1), @)ds,-

Mm—r00

Proof. The right hand member of (5) is rewritten as

lim L p(x)ds, L Az, Yt (yds,,

because #,, tends uniformly to ¢, i(x, ¥)=A(y, x) and the order of inte-
grations is interchangeable for %, € C~. Consequently, by virtue of
the completeness of the space 9’, we have (7).

Corollary. For Yoe Cy, the following identity holds in the sense
of distribution,

(8) o@)+ | K@, yowds,~ [ i@, vswis,,
where 6=¥oec C~.
Note. K(zx,¥y) and A(z, y) are not necessarily bounded at an end
point x* of L.
Definition 4. For Yp>0, set L,={x; x € L, |x—a*|=p, «* € 0L},
and L:=L—L,.
Lemma 3. For Y¢e C(L), let #,cC~(L) be the sequence men-
tioned above, and set
own(x) _ J ', y)
on(x)  Jr an(@)only)
If limow,,/on=0 holds at Yz € L, for sufficiently small p, then, #(x)=0

Mm—» oo

holds for Vx € L.

Proof. This is proved by the study of the behavior of ow, /on
near an end point 2*. However, the detailed proof of this important
lemma is too long to describe here.

Note. Though the kernel K(x,y) defined by (6) is not bounded

at end points z*, it is continuous with respect to  and y if x,y € L,.
That is, the operator

t.(y)ds,.

Kg= j K@, 1)p)ds,

is completely continuous when it maps C(L,)—C(L,).
Theorem 4. Set
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I +EK)e=c(@)+ j K@, yx@)ds,, e,

then, the inverse I+K)™'; C(L,)—~C(L,) exists and is continuous.
Proof. For reC(L,), we have (7). If I+ K)r=0, then
lim 0wy _ 0
m-o QN
follows from the right hand side of (7). Consequently, by Lemma 3,
we have #(x)=0. While, as was proved in [1], =0 is equivalent to
r=0.

§3. With help of these results obtained above, we can prove the
following theorem.

Definition 5. ¢—0 in 9 means | ¢"™ ||=sup|oc™|—-0 for m=0,1, 2,

Similarly, 6—0 in & means |6 ||—-0 for m=0,1,2, - - -.

Theorem 5. 6—=0m & = o0 9.

Proof. By virtue of Theorem 1, it is easy to see that ¢—0 in
D=>6—-01n £. The converseis also true. A brief proof is as follows;
Let p>0 be an arbitrarily fixed constant, and set 9,={s;0¢ 9,
suppoCL,}. For oce9,, (8 holds, and we have, by Theorem 4,
o=I+K)'6. Consequently, ||¢]|—0 follows from |5||—0. Assume
that |6 |—0 implies ||¢?’ |0 for p=0,1, - - -, m—1. Then, with help
of Theorem 1, it is proved that, when ||6™ ||—0, we have

P
[ @ e aas,
L
On the other hand, from (8), we have
0 = ([ +K)-* j 2, )6 () ds,.
L

Consequently, ||¢™ ||—0 follows from |6 ||—0, p=0,1, - - -, m.

—0.
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