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1. Introduction and statement of the result. In this note, we
consider the. asymptotic behavior of the solution of the initial value
problem

( 1 ) du(t) + Au(t) f(t), Ot oo, u(O)--Uo,
dt

where A is an m-accretive operator [2] on a real Banach space E,
Uo D(A) (domain of A) and f" [0, /oo)-E is a periodic function.
The ergodicity of the solution of (1) in case that f----0 has been studied
by several authors (cf. [1], [6]). In [5], Miyadera and Kobayashi
established an ergodic theorem for the. solution of (1) in case that

f e LX(0, oo E) (L(0, oo E) denotes the space of all E-valued functions

u" [0, oo)E such that [lu(t)ll dt +oo). Also, Kobayashi [4] ob-

tained mean convergence theorems for the solution of (1). We give
the following nonlinear ergodic theorem for the solution of (1) by using
the. nonlinear ergodic theorem due to Reich [6].

Theorem. Let E be a uniformly convex Banach space with a
Frdchet dierentiable norm and A be an m-accretive operator on E.
Let Uo D(A) and f Loc(O, c E) be a periodic function. Suppose
that the weak solution u of (1) is bounded in E (i.e., sup Ilu(t)ll c).

Then (l/t) () d eonvere weakl to.

{}2,. Proof. Let T>0 be the period of f. For each e [0, T],
we define an operator G()" D(A)---D(A) by G()=v(T), where
v" [0, T]E’ is the weak solution [2] of the initial value problem

(2) dvs(t) +Avs(t) f(s+t), O<t<T, v(0)=u.
dt

Then it is easy to see that G(s) is nonexpansive for each s e [0, T]. In
fact, rom Theorem 2.1 in Chapter III of [2], we find that IIG(s)u
-G(s)v]]_]]u-v or all u, v D(A) and s e [0, T]. On the other hand,
we have rom the periodicity o. the function f that G(s)u(s)
--u(kT- s), for s e [0, T] and k--0, 1, 2, .. Thus rom the. hypothesis,
we have. that or each s e [0, T], (G(s)u(s)}:o is bounded in E. Hence
by using the mean ergodic theorem in [6], we obtain that or each
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n-1s e [0 T] (l/n) ,--0 G(s)u(s) converges weakly to. a point w(s) e E, as
n-+o. In other words, (l/n) :_ u(kT+ s) converges weakly to w(s),
as n. For each nl, we define a unction h" [0, T]E by hn(S)

(l/n) =ou(kT+ s) or s e [0, T]. Then hn "[0, T]E is a continuous
unction and hn(s)SUp u(t) or all s e [0, T] and nl. Since hn(S)

w(s) weakly as n, or each s e [0, T], we deduce by Lebesgue’s
bounded convergence theorem tha or each z

lim I (z’ hn(S))ds=I(z,w(s))ds"
In other words,

( )( )lim (l/n) u(kT+ s) ds, z z, w(s) ds
=0

Since.

we find that

(1/nT) ]:r t(s) ds

converges weakly to a point

w=(1/T) fw(s)d,
as n--c. Then it follows that

(1/ t) : u(s) ds

converges weakly to. a point w e E, as t-c.
Remark. The assumption that. E has a Frchet differentiable

norm can be replaced by the assumption that E satisfies Optial’s con-
dition [3]. In [4], Kobayashi shwed w(s) is periodic, i.e., w(O)=w(T).
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