35. Galois Groups of Polynomials

By Mitsuo Yoshizawa
College of General Education, Keio University
(Communicated by Shokichi Iyanaga, m. J. a., April 12, 1984)

1. Let $f(x) \in K[x]$ be a monic irreducible polynomial of degree n over a field K of characteristic 0 . Several theoretical algorithms for the determination of the Galois group $\mathrm{Gal}_{K}(f)$ of $f(x)$ over K have been developed by many authors (cf. van der Waerden [5], Zassenhaus [7], Stauduhar [4]), but it is known that the practical determination is difficult for large n. In [1] a technique for determining the settransitivity of the Galois group of a polynomial is described by Erbach, Fischer and Mckay, and they prove that $x^{7}-154 x+99$ has the Galois group $P S L(2,7)$. In [3] Jensen and Yui give a criterion characterizing $f(x)$ with $\operatorname{Gal}_{K}(f) \cong D_{p}$ (the dihedral group of prime degree p).

In this paper we give criteria characterizing $f(x)$ which has as $\operatorname{Gal}_{K}(f)$ a group with some properties as a permutation group. In particular, we give a formula giving the order of $\operatorname{Gal}_{K}(f)$.
2. We state several terminologies [6] concerning the permutation group theory. Let G be a permutation group on Ω. We say that a subset Δ of Ω is an orbit of G if ($\Delta) G=\Delta$ and G acts transitively on Δ. G is called t-transitive on Ω if for every two ordered t-tuples $\alpha_{1}, \cdots, \alpha_{t}$ and $\beta_{1}, \cdots, \beta_{t}$ of elements of Ω (with $\alpha_{i} \neq \alpha_{j}, \beta_{i} \neq \beta_{j}$ for $i \neq j$) there exists $g \in G$ with $\left(\alpha_{i}\right) g=\beta_{i}(i=1, \cdots, t)$. If G is transitive on Ω and if there is a subset $\Gamma(1<|\Gamma|<|\Omega|)$ of Ω satisfying (Γ) $g=\Gamma$ or $(\Gamma) g \cap \Gamma=\phi$ for all $g \in G, G$ is called an imprimitive group on Ω with a block Γ. (Then $|\Gamma|||\Omega|$ holds obviously.) We say G is primitive on Ω if G is transitive but not imprimitive on Ω. Obviously G is primitive if G is doubly transitive. For s elements $\alpha_{1}, \cdots, \alpha_{s} \in \Omega$ we set $G_{\alpha_{1} \cdots \alpha_{s}}=\left\{g \in G:\left(\alpha_{i}\right) g\right.$ $\left.=\alpha_{i}, i=1, \cdots, s\right\}$, a subgroup of G.
3. From now on, we assume $G=\operatorname{Gal}_{K}(f)$ and $\Omega=$ the set of roots of $f(x)$. For independent variables X_{1}, \cdots, X_{n}

$$
\prod_{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \neq\left(\alpha_{1}^{\prime}, \cdots, \alpha_{n}^{\prime}\right) \in \Omega \times \cdots \times \Omega}\left\{\left(\alpha_{1}-\alpha_{2}^{\prime}\right) X_{1}+\left(\alpha_{2}-\alpha_{2}^{\prime}\right) X_{2}+\cdots+\left(\alpha_{n}-\alpha_{n}^{\prime}\right) X_{n}\right\}
$$

is a non-zero polynomial in $K\left[X_{1}, \cdots, X_{n}\right]$ of degree $n^{n}\left(n^{n}-1\right)$. Hence there exist distinct non-zero rational integers a_{1}, \cdots, a_{n} with

$$
\prod_{\left(\alpha_{1}, \cdots, \alpha_{n}\right) \neq\left(\alpha_{1}^{\prime}, \ldots, \alpha_{n}^{\prime}\right) \in \Omega \times \cdots \times \Omega}\left\{a_{1}\left(\alpha_{1}-\alpha_{1}^{\prime}\right)+a_{2}\left(\alpha_{2}-\alpha_{2}^{\prime}\right)+\cdots+a_{n}\left(\alpha_{n}-\alpha_{n}^{\prime}\right)\right\} \neq 0 .
$$

Hereafter we fix $a_{1}, a_{2}, \cdots, a_{n}$. For each $m(1 \leqq m \leqq n)$ we define

$$
\Phi_{\left(a_{1}, a_{2}, \cdots, a_{m}\right)}(X)=\prod_{\left(a_{1}, \cdots, \alpha_{m}\right) \in \Omega \times \cdots \times \Omega}\left(X-\left(a_{1} \alpha_{1}+a_{2} \alpha_{2}+\cdots+a_{m} \alpha_{m}\right)\right) .
$$

Then it is a polynomial in $K[X]$ of degree n^{m} of which all roots are distinct from one another.

Now there exist a natural number s and mappings $\Delta_{i}(i=0,1, \cdots, s)$ from Ω into the subsets of Ω, such that Ω decomposes into exactly $(s+1) G_{\alpha}$-orbits $\Delta_{0}(\alpha)=\{\alpha\}, \Delta_{1}(\alpha), \cdots, \Delta_{s}(\alpha)$ for each $\alpha \in \Omega$ satisfying $\left(\Delta_{i}(\alpha)\right) g=\Delta_{i}((\alpha) g)$ for all $\alpha \in \Omega, g \in G, i=0,1, \cdots, s$. We call $\Delta_{i}(0 \leqq i \leqq s)$ an orbital [2] of G. The number $\left|\Delta_{i}(\alpha)\right|$, which is independent of $\alpha \in \Omega$, is called the length $\left|\Delta_{i}\right|$ of Δ_{i}. Then we have

Theorem 1. $\Phi_{\left(a_{1}, a_{2}\right)}(X)=f_{0}(X) f_{1}(X) \cdots f_{s}(X)$ holds, where

$$
f_{i}(X)=\prod_{\alpha \in a} \prod_{\beta \in A_{i}(\alpha)}\left(X-\left(a_{1} \alpha+a_{2} \beta\right)\right) \quad(0 \leqq i \leqq s)
$$

is an irreducible polynomial in $K[X]$ with $\operatorname{deg} f_{i} / n=\left|\Delta_{i}\right|(i=0, \cdots, s)$.
4. Let Δ_{i} be an arbitrarily fixed orbital with $i \geqq 1$. Then there exist a natural number r and mappings $\Gamma_{j}=\Gamma_{j}^{\left(s_{i}\right)}(j=0,1, \cdots, r)$ from $T=\left\{(\alpha, \beta): \alpha \in \Omega, \beta \in \Delta_{i}(\alpha)\right\}$ into the subsets of Ω, such that Ω decomposes into exactly $(r+1) G_{\alpha \beta}$-orbits

$$
\Gamma_{0}(\alpha, \beta)=\{\alpha\}, \quad \Gamma_{1}(\alpha, \beta)=\{\beta\}, \quad \Gamma_{2}(\alpha, \beta), \cdots, \Gamma_{r}(\alpha, \beta)
$$

for each $(\alpha, \beta) \in T$ satisfying $\left(\Gamma_{j}(\alpha, \beta)\right) g=\Gamma_{j}((\alpha) g,(\beta) g)$ for all $(\alpha, \beta) \in T$, $g \in G, j=0,1, \cdots, r$. The number $\left|\Gamma_{j}(\alpha, \beta)\right|$, which is independent of $\alpha \in \Omega$ and $\beta \in \Delta_{i}(\alpha)$, is called the length $\left|\Gamma_{j}^{\left(\Delta_{i}\right)}\right|$ of $\Gamma_{j}^{\left(A_{i}\right)}$.

For $f_{i}(X)$ (corresponding to Δ_{i}) we define

$$
\Phi_{\left(a_{1}, a_{3}, a_{3}\right)}^{\left(f_{1}\right.}(X)=\prod_{r \in a} f_{i}\left(X-a_{3} \gamma\right) .
$$

Then it is a divisor of $\Phi_{\left(a_{1}, a_{2}, a_{3}\right)}(X)$ in $K[X]$, and we get
Theorem 2. $\Phi_{\left(a_{1}, a_{2}, a_{3}\right)}^{\left(f_{i}\right)}(X)=h_{0}(X) h_{1}(X) \cdots h_{r}(X)$ holds, where

$$
h_{j}(X)=\prod_{\alpha \in \Omega} \prod_{\beta \in \Delta_{i}(\alpha)} \prod_{r \in \Gamma_{j}(\alpha, \beta)}\left(X-\left(a_{1} \alpha+a_{2} \beta+a_{3} \gamma\right)\right) \quad(0 \leqq j \leqq r)
$$

is an irreducible polynomial in $K[X]$ with $\operatorname{deg} h_{j} /\left(n\left|\Delta_{i}\right|\right)=\left|\Gamma_{j}^{\left(\Lambda_{i}\right)}\right|$ ($j=0,1, \cdots, r$).

Remark. In Theorems 1 and 2,s=1 holds if and only if G is doubly transitive on Ω, and moreover $r=2$ holds if and only if G is triply transitive on Ω.
5. We can continue arguments of Theorems $1,2, \cdots$ similarly. Hence by this method we can get $|G|$ essentially because of the following lemma (cf. [6, Theorem 3.2, Proposition 3.3]).

Lemma. If $G_{r_{1} \cdots r_{v}}=\{1\}$ holds for v elements $\gamma_{1}, \cdots, \gamma_{v}$ in Ω, we have $|G|=\left|\left(\gamma_{1}\right) G\right|\left|\left(\gamma_{2}\right) G_{r_{1}}\right| \cdots\left|\left(\gamma_{v}\right) G_{r_{1} \cdots \gamma_{v-1}}\right|$ where $\left|\left(\gamma_{k}\right) G_{r_{1} \cdots \gamma_{k-1}}\right|$ is the length of the orbit of $G_{r_{1} \cdots \gamma_{k-1}}$ containing γ_{k}.
6. Let us suppose that n is not prime and d is a divisor of n with $1<d<n$. Assuming that $\varphi_{i}\left(X_{1}, \cdots, X_{d}\right)(i=1, \cdots, d)$ are the elementary symmetric polynomials of X_{1}, \cdots, X_{d} and that $\Omega^{(d)}$ is the set of d-element subsets of Ω, then for independent variables Y_{1}, \cdots, Y_{d}

$$
\prod\left\{\sum_{\substack{i=1 \\\left\{\alpha_{1}, \cdots, \alpha_{d}\right\} \neq\left\{\alpha_{1}^{\prime}, \cdots, \alpha_{d}\right\} \in \theta^{(d)}}}^{d} Y_{i}\left(\varphi_{i}\left(\alpha_{1}, \cdots, \alpha_{d}\right)-\varphi_{i}\left(\alpha_{1}^{\prime}, \cdots, \alpha_{d}^{\prime}\right)\right)\right\}
$$

is a non-zero polynomial in $K\left[Y_{1}, \cdots, Y_{d}\right]$ of degree $\binom{n}{d}\left(\binom{n}{d}-1\right)$. Hence there exist rational integers b_{1}, \cdots, b_{d} with

$$
\prod_{\substack{ \\\left\{\alpha_{1}, \cdots, \alpha_{d}\right\} \neq\left\{\alpha_{1}^{\prime}, \cdots,,_{d}^{\prime}\right\} \in \Omega(d)}}\left\{\sum_{i=1}^{d} b_{i}\left(\varphi_{i}\left(\alpha_{1}, \cdots, \alpha_{d}\right)-\varphi_{i}\left(\alpha_{1}^{\prime}, \cdots, \alpha_{d}^{\prime}\right)\right)\right\} \neq 0
$$

Hereafter we fix b_{1}, \cdots, b_{d}. If we define

$$
\Psi_{\left(b_{1}, \cdots, b_{d}\right)}(X)=\prod_{\left\{\alpha_{1}, \ldots, \alpha_{d}\right\} \in \Omega^{(}(b)}\left\{X-\left(b_{1} \varphi_{1}\left(\alpha_{1}, \cdots, \alpha_{d}\right)+\cdots+b_{d} \varphi_{d}\left(\alpha_{1}, \cdots, \alpha_{d}\right)\right)\right\},
$$

then it is a polynomial in $K[X]$ of degree $\binom{n}{d}$ of which all roots are distinct from one another, and we get

Theorem 3. $\Psi_{\left(b_{1}, \ldots, b_{d}\right)}(X)$ has an irreducible factor of degree n / d in $K[X]$ if and only if G is an imprimitive group whose block-size is d.

In Theorem 3 if $\lambda(X)$ is an irreducible factor of $\Psi_{\left(b_{1}, \ldots, b_{d}\right)}(X)$ of degree n / d, then we may assume that G has n / d blocks $\Delta_{i}=\left\{\alpha_{i 1}, \cdots, \alpha_{i d}\right\}$ ($i=1, \cdots, n / d$) with $\Omega=\Delta_{1}+\cdots+\Delta_{n / d}$ satisfying

$$
\lambda(X)=\prod_{i=1}^{n / d}\left\{X-\left(b_{1} \varphi_{1}\left(\alpha_{i 1}, \cdots, \alpha_{i d}\right)+\cdots+b_{d} \varphi_{d}\left(\alpha_{i 1}, \cdots, \alpha_{i d}\right)\right)\right\}
$$

Let \bar{G} be the permutation group on $\bar{\Omega}=\left\{\Delta_{1}, \cdots, \Delta_{n / d}\right\}$ induced by G. Then we have

Theorem 4. $\bar{G} \cong \operatorname{Gal}_{K}(\lambda)$.

References

[1] D. W. Erbach, J. Fischer, and J. Mckay: Polynomials with PSL (2,7) as Galois group. J. Number Theory, 11, 69-75 (1979).
[2] D. G. Higman: Intersection matrices for finite permutation groups. J. Algebra, 6, 22-42 (1967).
[3] C. U. Jensen and N. Yui: Polynomials with D_{p} as a Galois group. J. Number Theory, 15, 347-374 (1982).
[4] R. P. Stauduhar: The determination of Galois groups. Math. Comput., 27, 981-996 (1973).
[5] B. van der Waerden: Modern Algebra. vol. 1, Unger, New York (1953).
[6] H. Wielandt: Finite Permutation Groups. Academic Press, New YorkLondon (1964).
[7] H. Zassenhaus: On the group of an equation. Nachr. Akad. Gött. Math.Phys., K1.II, 147-166 (1967).

