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1. Let f(x) K[x] be a monic irreducible polynomial of degree
n over a field K of characteristic 0. Several theoretical algorithms
for the determination o the Galois group Gal (f) of f(x) over K have
been developed by many authors (cf. van der Waerden [5], Zassenhaus
[7], Stauduhar [4]), but it is known that the practical determination
is difficult or large n. In [1] a technique or determining the set-
transitivity o the Galois group o a polynomial is described by Erbach,
Fischer and Mckay, and they prove that x7-154x/99 has the Galois
group PSL(2, 7). In [3] Jensen and Yui give a criterion characteriz-
ing f(x) with Gal (f)NDp (the dihedral group of prime degree p).

In this paper we give criteria characterizing f(x) which has as

Gal (f) a group with some properties as a permutation group. In
particular, we give a ormula giving the order of Gal (f).

2. We state several terminologies [6] concerning the permutation
group theory. Let G be a permutation group on /2. We say that a
subset z/o tO is an orbit of G i (z/)G--/and G acts transitively on
G is called t-transitive on 9 if for every two ordered t-tuples a,...,
and , ..., fit of elements of/2 (with a,:/:a, :/: for i:/:]) there exists
g e G with (a,)g=, (i=1, ..., t). If G is transitive on t9 and if there
is a subset F (11F1191) of 9 satisfying (F)g=F or (F)gF= for
all g e G, G is called an imprimitive group on/2 with a block F. (Then

IIF[[[2[ holds obviously.) We say G is primitive on t9 if G is transitive
but no imprimitive on tO. Obviously G is primitive if G is doubly
transitive. For s elements a, ..., a, e tO we set G ={g e G" (a)g
--ci, i-1,...,s}, a subgroup of G.

3. From now on, we assume G=Gal (f) and/2=the set of roots
.of f(x). For independent variables X, ..., X

1- {(O1--0)Xl+(O2--O)X2+""" +(On--Ogfn)Xn}
al,... ,an)@( a,.’’ ,at) gX’’’ X f2

is a non-zero polynomial in K[X, ..., Xn] Of degree nn(nn-l). Hence
there exist distinct non-zero rational integers al,..., an with

Hereafter we fix a, a2, .-., an. For each m (l=m=n) we define

(,,...,)(X)-- [-[ (X-(aol-+-aa./ /ao,)).
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Then it is a polynomial in K[X] of degree n of which all roots are
distinct from one another.

Now there exist a natural number s and mappings d (i=0, 1, ., s)
from tO into the subsets o 9, such that /2 decomposes into exactly
(s+l) G-orbits A0()={}, A,(c),..., A() for each c e tO satisfying
(A(c))g=A((c)g) or all c e/2, g e G, i-0, 1, ..., s. We call A (Ois)
an o.rbital [2] of G. The number [A(a)[, which is independent o a e 9,
is called the length [A[ of A. Then we have

Theorem 1. (,)(X)=fo(X)f(X). f(X) holds, where
f(X)= (X--(ala+a)) (Ois)

is an irreducible polynomial in K[X] with deg fi/n= ]] (i=0,..., s).
4. Let be an arbitrarily fixed orbital with il. Then there

exist a natural number r and mappings F=FZ (]=0, 1, ..., r) rom
T={(, fl)" e 9, fle ()} into the subsets o 9, such that 9 decom-
poses into exactly (r+l) G-orbits

0(, )={}, G(, )={}, G(, ), ..., (, )
for each (a, fl) e T satisfying (F(a, fl))g=F((a)g, (fl)g) or all (a, ) e T,
g e G, ]=0, 1, ..., r. The number [F(a, fl)], which is independent of
a e 9 and e (a), is called the length F}] o F}.

For f(X) (corresponding to 3) we define

(ax,a,a)

Then it is a divisor of (,,,)(X) in K[X], and we get
Theorem 2. (x*) (X)=h0(X)h(X). h(X) holds where(a,a,aa)

h(X) (X-- (a,a+ afl+ ar)) (0G] r)
a d(a) rFd(a,)

is an irreducible polynomial in K[X] with deg h/(n]])=[
(]=0,1, ..., r).

Remark. In Theorems I and 2, s=l holds if and only i G is
doubly transitive on 9, and moreover r=2 holds if and only if G is
triply transitive on 9.. We can continue arguments o Theorems 1, 2,... similarly.
Hence by this method we can get G] essentially because of the ollow-
ing lemma (cf. [6, Theorem 3.2, Proposition 3.3]).

Lemma. If Gr...r={1} holds for v elements ,..., in 9, we
have G]=()GIG)G,].. "[(r)G,..._, where (G)G..._] is the length
of the orbit of G,..._, containing G.

6. Let us suppose that n is not prime and d is a divisor o n with
1dn. Assuming that (X, ., X) (i= 1, ., d) are the elemen-
tary symmetric polynomials o X,..., X and that 9() is the set o
d-element subsets o 9, then or independent variables Y, ..., Y

{al,"’,aa} {i,’",}



No. 4] Galois Groups o Polynomials 129

is a non-zero polynomial in K[Y1,..., Y] of degree d d
Hence there exist rational integers b,..., b with

{__ b((,..., )--(,.-., :))} :/:0.
fl,...,} {,..-,}

Hereafter we fix b, ..., b. I we define
(,...,)(X)= {X-- (b(a, ..., a)+... + b(a,, ..., a))},

{a,...,aa}9

then it is a polynomial in K[X] of degree (n)d o which all roots are

distinct rom one another, and we get
Theorem 3. ’(,...,)(X) has an irreducible factor of degree hid

in K[X] if and only if G is an imprimitive group whose block-size is d.
In Theorem 3 if (X) is an irreducible actor of ’(,...,)(X) of

degree n/d, then we may assume that G has n/d blocks 3={a, ..-, a}
(i=1, ..., n/d) with 9=+... +/ satisfying

n/d

2(x)= {x- (b,,(,, ..., )+... +b(, ..., ))}.
i=l

Let be the permutation group on ={, ..., /} induced by G.
Then we have

Theorem 4. GGal (2).
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