
No. 4] Proc. Japan Acad., 60, Ser. A (1984) 113

A Varifold Solution of the Nonlinear Wave
Equation of a Membrane

By Daisuke FUJIWARA, Atsushi INOUE and Shy6ichiro TAKAKUWA
Department of Mathematics, Tokyo. Institute of Technology

(Communicated by K6saku YOSlDA, M. J. A., April 12, 1984)

1. Introduction. Let U be a bounded domain in R with the
boundary U which is a Lipsehitz manifold. Let D=3/x, ]--1,.
2,..., n, and Dt=/3t. Then the nonlinear wave equation we shall
consider is as ollows:
( 1 ) Du(t, x)--= D{Du(t,x)(l+[Du(t,x)])-’/}=O.
( 2 ) u(t, x) Uo(X), Dtu(O, x) u(x).
(3) u(t, x)= g(x) for x in 3U.

The global existence of a weak solution of the above equation is
not yet proved in general. (See 2 below for the definition of the
weak solution.) In this paper, we shall try to treat the equations (1)-
(3) by virtue of the theory of varifolds (cf. [1] and [2]) and prove the
global existence of a varifold solution of them. Although a varifold
solution is quite a weak notion, the varifold solution existence of
which we can prove satisfies a generalized energy conservation law
and is a solution of a problem of calculus of variation, which is a
natural generalizat’ion of Hamilton’s principle"

Proofs of the results in this paper will be published elsewhere.
2. A weak solution. We shall denote by BV(U) the space of

all functions of bounded variation in U, that is, u e BV(U)if and only
if u e L(U) and its gradient Du=(Du, Du, ..., D,,u) is a vector valued
Radon measure (cf. [3]). We denote its total variation by Du]. The
Sobolev space H(U) of order 1 is contained in BV(U). If u e BV(U)
then its trace Yu from the interior o U is a unction in L’(U). For
u in BV(U), the set E={(x, y) e U R]yu(x)} is a Caccioppoli subset
of R/’. At each point (x, y) of the reduced boundary *E o Eu, we
can define the exterior unit normal ,(x, y)-- (,(x, y), ,dx, y), -..,
,(x, y), ,+(x,y)) to Eu. The characteristic unction Z of E is oi
bounded variation. [DZ] denotes the total variation of the gradient

DZ.
Definition 2.1. Assume that Uo e H’(U), u, e L(U) and that g is

the trace o some unction in BV(U). Then a unction u(t, x) e Uoo(R U)
is a weak solution of the equations (1), (2) and (3) if the following
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conditions hold"
(i) For each t e R, u(t, x) is a function of bounded variation with

respect to x such that ’u=g.
(ii) For each (t, x) e C([0, T) Co(U)) C([0, T) C(U)), we have

(2.1) Dt(O, x)Uo(X)dx --u (O, x)ul(x)dx= dt {--D(t, x)u(t, x)

}+ D(t, x),(t x, y) ln+ l(t’ X, y) IDZE l,
j=l

where Z denotes the characteristic unction of the set E={(x,y)
e U R Y u(t, x)} and ,(t x, y)= (,(t x, y), ,(t x, y), ., ,/ (t x, y))
is the exterior unit normal to Eu.

In the ollowing we shall consider the case g--0.

:. A varifold solution. We shall define the notion o a vari-
old solution of the equation (1). Let G--G(n/l, n) be the Grassmann
manifold of all n-dimensional vector subspaces o R/. Let S e G be
an n-dimensional vector subspace of Rn+l. Then we denote by ,(S)

(121(S), 22(S), .-o, 2n 1(S)) its unit normal to S. We choose ,(S) so that
,+(S)0. If ,/(S) 0, then ,(S) is not defined. However 1n+l(S)
and ,/(S),(S), ]=1, 2,..., n, can be extended as continuous unc-
tions defined on the whole o G. The space U R G is called the
,Grassmann bundle of UR and denoted by G(UR). A point o
.G(U R) is denoted by (x, y, S), where x e U, y e R and S e G.

A variold (more precisely, an n-varifold) V(x, y, S) is a positive
Radon measure defined on the Grassmann bundle G(UR). (See
Allard [1] or detailed discussions.) Using this notion, we can give
the ollowing

Definition ).1. A varifold V(t; x, y, S) depending on the parame-
ter t e [0, T) is called a varifold solution o the nonlinear equation (1)
if, or each e C([0, T) Co(U)) C([0, T) C(U)), we have

G(UR) j=l--u Dt(O, x)uo(x)dx --u (O, x)ul(x)dx.

Remark :.2. If a variold solution V(t;x, y,S) of (1) can be
identified with a graph {y=u(t,x)} o a unction u(t,x) of class C,
then u(t, x) is a weak solution of (1) in the sense o Definition 2.1.

We can prove the ollowing theorem by the Galerkin method.
Theorem 1. Assume that Uo(X) e BV(U) and that u(x)e L2(U).

Then for an arbitrary TO, there exists a varifol solution V(t x, y,
S) of the equation (1) for t e [0, T).

The ollowing problem naturally arises.
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Problem. Can one identify the varifold solution V(t;x, y, S)of
Theorem 1 with a rectifiable set in U R for each t in [0, T)?

4. The extremal property o a varifold solution.
Definition 4.1. Let V(t;x, y,S)be a varifold depending on the

parameter t e [0, T). For each t, we define a positive measure z(t, x, y)
.on U R by the following equality For any (x, y) e Co(U R),

x, y,{4.1) <, )= (x, Y), I(S)dV( S).

We call p(t, x, y) the mass distribution of the membrane if V(t x, y, S)
is a variold solution of (1). Let (S) be the characteristic function
o the set Go {S e G], (S)= 0}. Then we define the measure B(t, x, y)
on UR by

(, B} --[ (x, y))(S)dV(t x, y, S).
JG(UxR)

We call Spt B the set o.f catastroph points of the membrane.
Definition 4.2. Given a variold V(t; x, y, S) with the parameter

t and a sphere Be(x) of the radius p with the center x e U, we define

He(t, x)--f y,/(S)dV(t, z, y, S).
JBp (x) xRG

Let IBm(x)] stand or the volume o the sphere. Then the limit

v(t, x)=lim He(t’ x)

,exists almost every x in U. We call v(t, x) the position of the mem-
brahe i V(t;x, y, S) is a varifold solution o the equation (1).

Remark 4o:. The variold solution V(t;x, y,S) we constructed
in Theorem 1 satisfies the generalized energy conservation law"

--IDv(t, x) dx + dV(t x, y, S)
G(UR)

-lu(x) dx + /i--[Duol-dx.

Using v(t, x), we define the ollowing action integral"

A(V) dt -z]Dtv(t, x) dx dV(t x, y, S)
U G(UR)

Let q(t, x) be a function in C2([0, T); Co(U)) C([0, T); C(U)). Then
we can define a one parameter group of translations"

](a) U R (x, y) >(x, y/ a(t, x)) e U R.
This induces a map o a variold V to another va-’iold (a).V. The
,extremal property o the varifold sglutin of the wave equation is
.stated as ollows

Theorem 2. The varifold solution V(t x, y, S) of Theorem 1 of
the wave equation (1) is an extremal of the action A(V) with respect
to the one parameter family of deformations (a)., that is,
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d A(v(z),V) I=o= 0.(4.2)
da

Remark 4.4. This is a generalization of Hamilton’s principle (4).

References

1 Allard, W.K.: On the first variation of a varifold. Ann. Math., 417-491
(1972).

2 Almgren, F. J., Jr.: The theory of varifoIds, A variational calculus in the
large for the k-dimensional area integrand. Princeton (1965) (Mimeo-
graphed note).

3 Giusti, E.: Minimal surfaces and functions of bounded variation. Notes on
Pure Math. Australian National Univ., Canberra (1977).


