29. On an Identity of Desboves

By Jasbir Singh Chahal
Mathematical Department, Brigham Young University
(Communicated by Shokichi Iyanaga, m. J. a., March 12, 1984)
§ 1. Introduction. A. Desboves (cf. [2], see also [3], p. 631, line 2) employed the identity

$$
\begin{align*}
\left(y^{2}+\right. & \left.2 x y-x^{2}\right)^{4}+\left(2 x^{3} y+x^{2} y^{2}\right)(2 x+2 y)^{4} \tag{1}\\
& =\left(x^{4}+y^{4}+10 x^{2} y^{2}+4 x y^{3}+12 x^{3} y\right)^{2}
\end{align*}
$$

to show, among others, that $x^{4}+a y^{4}=z^{2}$ is solvable in Z if a is of the form $(2 x+y) x^{2} y$ or $2 x^{2}+y^{4}$. The purpose of this note is to show that this identity can also be used to get a point of infinite order of $E(\boldsymbol{Q})$, the group of rational points on certain elliptic curves E of the form (2)

$$
y^{2}=x^{3}+A x, \quad A \in \boldsymbol{Q} .
$$

Here, without loss of generality, we can assume that A is a non-zero integer, free of fourth powers. In another context it has been widely conjectured (cf. [5] or the table on p. 147 of [4]) that if a positive integer $n \equiv 5,6,7(\bmod .8)$ then n is a congruent number, i.e., it is the area of a right triangle of all sides rational. We shall rather show that any residue class modulo 8 contains infinitely many congruent numbers.
§2. The main result. First we state the following theorem which we shall need in the sequel and which was proved independently by E. Lutz and T. Nagell (cf. [1], p. 264, Theorem 22.1).

Theorem 1. Suppose $P=(x, y) \in E(\boldsymbol{Q})$ is a point of finite order on the elliptic curve $y^{2}=x^{3}+A x+B$ with $A, B \in Z$. Then x and y are necessarily integers.

Theorem 2. For any integer $\lambda \neq 0$, let E_{λ} be the curve

$$
\begin{equation*}
y^{2}=x^{3}+A_{k} x, \tag{3}
\end{equation*}
$$

where $A_{\lambda}=8 \lambda(2 \lambda-1)^{2}$. Then $E_{\lambda}(Q)$ has a point of infinite order.
Proof. A solution (s, t, u) with $t \neq 0$ of $s^{4}+A t^{4}=u^{2}$ leads to a solution $x=s^{2} / t^{2}$ and $y=s u / t^{3}$ of (2). The following identity

$$
\begin{gathered}
\left(1-12 \lambda+4 \lambda^{2}\right)^{4}+8 \lambda(2 \lambda-1)^{2}(2(1+2 \lambda))^{4} \\
=\left(1+40 \lambda-104 \lambda^{2}+160 \lambda^{3}+16 \lambda^{4}\right)^{2},
\end{gathered}
$$

which follows from (1) by putting $x=1-2 \lambda, y=4 \lambda$ gives a rational point $P=(x, y)$ on (3) with

$$
\begin{gathered}
x=x(\lambda)=\frac{\left(1-12 \lambda+4 \lambda^{2}\right)^{2}}{4(1+2 \lambda)^{2}}, \\
y=y(\lambda)=\frac{\left(1-12 \lambda+4 \lambda^{2}\right)\left(1+40 \lambda-104 \lambda^{2}+160 \lambda^{3}+16 \lambda^{4}\right)}{8(1+2 \lambda)^{3}}
\end{gathered}
$$

with neither x nor y being an integer. Thus P is a point of infinite order.

Remark. If an integer $A \neq 0$ is not of the form $8 \lambda(2 \lambda-1)^{2}$ with $\lambda \in Z$ we may still be able to find a point of infinite order on (2) as follows:

For $A, B \in \boldsymbol{Q}^{\times}$, let us write $A \sim B$ if $A / B \in\left(\boldsymbol{Q}^{\times}\right)^{4}$, the group the fourth powers of the elements of \boldsymbol{Q}^{\times}. For $A, B \in \boldsymbol{Q}^{\times}$, the curves y^{2} $=x^{3}+A x$ and $y^{2}=x^{3}+B x$ are birationally equivalent over \boldsymbol{Q} if and only if $A \sim B$, say $A=c^{4} B$. Then $\left(c^{2} x, c^{3} y\right)$ is a point on the first curve if and only if (x, y) lies on the second curve. For any rational $\lambda=a / b$ $\neq 0,1 / 2$ with $(a, b)=1,(x(\lambda), y(\lambda))$ is still a rational point on (3), but it need not be of infinite order. Now $A_{\lambda}=8 a b(2 a-b)^{2} / b^{4} \sim 8 a b(2 a-b)^{2}$. Thus if b is odd, then $\left(b^{2} x(\lambda), b^{3} y(\lambda)\right)$ is a point of infinite order of (2) with $A=8 a b(2 a-b)^{2}$. Furthermore, if $8 a b(2 a-b)^{2}$ has a factor d^{4} with d integer, then $\left(b^{2} x(\lambda) / d^{2}, b^{3} y(\lambda) / d^{3}\right)$ is again a point of infinite order on (2) with $A=8 a b(2 a-b)^{2} / d^{4}$. In this way we get a point of infinite order on (2), for example, with $A=3,14,33,60,95$:

a	2	4	6	8	10
b	3	7	11	15	19
$A_{2} \sim$	3	14	33	60	95

This leads to the following question : let Φ be the composite map

$$
\boldsymbol{Q}^{\times}-\{1 / 2\} \xrightarrow{A_{\lambda}} \boldsymbol{Q}^{\times} \xrightarrow{\pi} \boldsymbol{Q}^{\times} /\left(\boldsymbol{Q}^{\times}\right)^{4} .
$$

Put

$$
\begin{aligned}
D & =\left\{a / b \in \boldsymbol{Q}^{\times} \mid(a, b)=1, b \text { odd }\right\} \\
D^{*} & =\left\{m \in Z \mid m \neq 0 \text { and } m \text { free of } 4^{\text {th }} \text { powers }\right\} .
\end{aligned}
$$

What numbers in D^{*} are represented by $\Phi_{I D}$? Apart from the fact that there are infinitely many numbers in D^{*} represented by $\Phi_{\mid D}$ (cf. Appendix), this seems to be an open question.
§3. Application. The following result on congruent numbers is a consequence of Theorem 2.

Theorem 3. If $n=m\left(4 m^{2}+1\right)$ for a positive integer m, then n is a congruent number.

Proof. It is well-known (cf. [6]) that n is a congruent number if and only if

$$
\begin{equation*}
y^{2}=x^{3}-n^{2} x \tag{4}
\end{equation*}
$$

has a point of infinite order. In Theorem 2, let $\lambda=-2 m^{2}$. Then $(x(\lambda) / 4, y(\lambda) / 8)$ is a point of infinite order on (4) with $n=m\left(4 m^{2}+1\right)$.

Corollary 4. For any integer $r(0 \leq r<8)$, there are infinitely many integers n, such that
(i) $n \equiv r$ (mod. 8) and
(ii) n is a congruent number.

Proof. If $n=m\left(4 m^{2}+1\right)$, then n is a congruent number. Write $m=2 s+t$ with $t=0$ or 1 , according as m is even or odd. Then

$$
\begin{aligned}
n & =(2 s+t)\left(4(2 s+t)^{2}+1\right) \\
& \equiv 4 t^{3}+2 s+t(\bmod .8) .
\end{aligned}
$$

Now given r, one can choose $t=0$ or 1 and infinitely many s, such that $4 t^{3}+2 s+t \equiv r(\bmod .8)$.

Appendix

Theorem. There are infinitely many integers λ, such that
(i) λ is free of fourth powers and
(ii) $2 \lambda-1$ is square-free.

Proof. Put $\lambda_{1}=2$. So $2 \lambda_{1}-1=3$. Suppose λ_{i-1} has been chosen for $i \geq 2$. For positive integers i and n, let $N_{m}^{i}(n)$ denote the number of integer multiples of m^{i} which lie in the open interval $(n, 2 n)$. Then

$$
N_{m}^{i}(n) \leq \begin{cases}\left(n / m^{i}\right)+1, & \text { if } 2 \leq m^{i}<n \\ 1, & \text { if } n \leq m^{i}<2 n \\ 0, & \text { if } 2 n \leq m^{i}\end{cases}
$$

The number of integers in the interval $(n, 2 n)$ which are multiple of a fourth power is less than

$$
\sum_{m=2}^{n 1 / 4}\left(n / m^{4}\right)+n^{1 / 4}+\left((2 n)^{1 / 4}-n^{1 / 4}\right) .
$$

Using the fact that

$$
\sum_{m=2}^{\infty}\left(1 / m^{4}\right)=\left(\pi^{4} / 90\right)-1,
$$

it follows that the number $f(n)$ of odd integers λ in the interval $(n, 2 n)$ which are free of fourth power is larger than

$$
\frac{n}{2}-\left(\left(\frac{\pi^{4}}{90}-1\right) n+(2 n)^{1 / 4}\right)>\frac{40}{100} n-(2 n)^{1 / 4}
$$

Similarly, the number $g(n)$ of odd integers in the interval $(2 n, 4 n)$ which contain a square is less than

$$
\begin{aligned}
2 n(& \left.\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\sum_{m=11}^{\infty} \frac{1}{m^{2}}+(2 n)^{1 / 2}\right)+\left(2 n^{1 / 2}-(2 n)^{1 / 2}\right) \\
& <2 n\left(\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\int_{10}^{\infty} \frac{1}{x^{2}} d x\right)+2 n^{1 / 2} \\
& <\frac{35}{100} n+2 n^{1 / 2} .
\end{aligned}
$$

Now for sufficiently large $n>\lambda_{i-1}$, we have $f(n)>g(n)$, because

$$
\frac{40}{100} n-(2 n)^{1 / 4}>\frac{35}{100} n+2 n^{1 / 2} .
$$

For the above mentioned $f(n)$ integers λ, the integers $2 \lambda-1$ are all odd and among these integers $2 \lambda-1$, at the most $g(n)$ can have a square
factor. So there is at least one λ_{i} with the required properties.
Remark. In view of Theorem 2, the above theorem shows that there are infinitely many non-isomorphic elliptic curves over \boldsymbol{Q} of positive rank.

References

[1] J. W. S. Cassels: Diophantine equations with special reference to elliptic curves. J. London Math. Soc., 41, 193-291 (1966).
[2] A. Desboves: Sur l'emploi des identités algébriques dans la résolution, en nombres entiers, des équations d'un degré supérieur au second. Comptes Rendus, Paris, 87, 159-161 (1878).
[3] L. E. Dickson: History of the Theory of Numbers. vol. II, Chelsea, New York (1971).
[4] T. Ono: Variations on a theme of Euler. Jikkyō, Tokyo (1980) (in Japanese).
[5] N. M. Stephens: Congruent properties of congruent numbers. Bull. London Math. Soc., 7, 182-184 (1975).
[6] J. B. Tunnell: A classical diophantine problem and modular forms of weight $3 / 2$. Invent. math., 72, 323-334 (1983).

