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1. Okamoto’s polynomials. K. Okamoto [1] found an inter-
esting new rational solution of the Toda equation which produces a
sequence of infinitely many rational solutions of Painlev-IV equation.
According to him the recurrence relations
(1.1) Po-1, Pl-t,
(1.2) Pn-1Pn PP’ P+ (t2-2n)P,
(1.3) P_ (t) in(n .)p(it),
(1.4) Q0--1,
(1.5) Qn_IQ+I-QnQ’t-Q+(t2-2n-1)Q,
(1.6) Q_(t)-i(-l)Q_l(it), n= 1, 2, 3,
determine two. series of polynomials

(1.7) P= P,tn-2,
j=0

n(n+l)/2
tn(n+l)-(1 8) Q-- ] Q,

with integral coefficients (P,0=Q,0 1).
(1.9) rn P-P+/P= (log Pn)"/ t-2n,
(1.10) s=(logP_/P)t+2t
satisfies the Toda equation

r(s Sn+).(1.11) s’-rn_l--r, r--
(1.12) n-- Qn-IQ 1/Q= (log Qn)"+ t2-2n- 1,
(1.13) =(log Qn_/Q)’+2t
also satisfies the Toda equation
(1.14) -’s=n_l--r, r=( +

If we define q and p= by
(1.15) q=
(1.16) p== Pn-IQ/P=Q=-I -iq-(it)
then
(1.17) Yn(X)-- / 2/3 qn( 2/3 x)
satisfies P-IV (n,-2(n + 1/3)2) where we mean by
Painlev-IV equation

(1.18) y" y’/2y+ (3 / 2)y -- 4xy +2(x2- c)y -- fl / y.
Notice that

P-IV (a, fl) the
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(1.19) z(x) /2/3 n (//2/3 x)= --iy_n(iX)
also satisfies Painlev-IV equation P-IV (n, -2(n-1/3)).

2. Main results. We proved that
Theorem 2.1. (1) P and Q are really polynomials of degree

n and n(n+l) with integral coefficients. Q are even functions, that
is, are polynomials of t of degree n(n+l)/2.

(2) All zeros of P and Q are simple.
(3) Each pair of polynomials {P, P/}, {Q, Qn+}, {Pn, Qn}, {Pn+,

Q} and (P/, Vn} has no common zero.
(4) r (?) has n (n(n+ 1)) double poles.
(5) s () has 2n(n-1)+1 (2n) simple poles.
(6) q (p) has n(2n+ 1) (n(2n-1)) simple poles.
As a consequence of the above theorem P and Q can be expressed

as
n n(n+l)

(2.1) Pn-- [I (t--a,), Q= (t- b,).
k=l

Sharp estimates for the maximal moduli
(2.2) A=max {lan,l l_k_n},
(2.3) B max {I b, 1

_
k

_
n(n+ 1)}

for zeros of these polynomials were obtained.
Theorem 2.2 (Main theorem).

(2.4) {2n(n+2)/3(n+l)}/_A/_3n/,
(2.5) {(2n+3)/3}/_B/_3{(2n+l)/2}/, n=0, 1, 2,

Moreover we can show the inequality
(2.6) B/A/BAB--IA=O, n=2, 3, 4,

The proof of our main theorem is almost the same as that for our
previous result [2]. We showed an analogous sharp estimate for the
maximal modulus of poles of the rational solution of the Toda equation
of Painlev-II type. Detailed proof will be published elsewhere. Here
we only list up the fundamental recurrence relations which are satis-
fied by rational functions q, Pn, rn, 8n, n and .

:. Recurrence relations. The rational functions q and Pn are
uniquely determined by the recurrence relation
(3.1) p0=q0 --t,
(3.2) p= --p_--q_--3t--(3n--2)/q_,
(3.3) q= --p--q_--3t--(3n--1)/pn,
(3.4) p_(t)=--iq(it), q_(t)----iPn(it), n--l, 2, 3, ..-.

We can derive the ollowing relations
(3.5) p’---pn(PW2qn+3t)+3n--1,
(3.6) q’= --q(2p+q+3t)--3n--1.
Eliminating p from (3.5) and (3.6) we can show that Yn(X) defined by
(1.17) satisfies Painlev-IV equation. Above relations (3.5) and (3.6)
can also be expressecl as
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(3.7) p’--p,(q,--q,_),
So if we introduce
(3.8) rn---Pnqn, S-- --Pn--q-I

and
(3.9) ’,--P,+lq, = --P--qn

then (r, s} and (, } are both solutions of the Toda equation.
Values of these rational solutions can be calculated through the follow-
ing recurrence relations.
(3.10)
(3.11)
(3.12)
(3.13)
(3.14)
(3.15)
(3.16)
(3.17)

So 2t+ t- r0 t,
s= {(r_ +3n--4)(r_ +3n-- 2)} / (rn_(s_- 3t)} + 3t,

r --r_--6n+3--s(Sn--3t),
r_n(t)=--r(it), S-n(t)=--is+(it), n=l, 2, 3, ..-.

o=2t, eo=t-l,
n {(n-1 +3n-- 1)(_,+3n--2)} /{_l(n_1- 3t)} + 3t,

_,--6n-- =(--3t),
e_=(t)=--e=_(it), _(t)=--in(it), n=l, 2, 3, ....
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