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1. Introduction. Let K(x, y) be a kernel satisfying K(x,
=Const./Ix-yl or any pair (x, y) of real numbers with xy. We

that K(x, y) is of type 2 if Kf(x)--lim,o K(x,say y)f(y)dy

exists almost everywhere for any f e L and K Il. sup {llgfll./llfll
f e L} oo, where L denotes the space of square integrable unctions

f(x) on the real line with norm llfll.--- [f(x)12dx For the har-

monic analysis on curves, A. Calderhn investigated kernels C[](x, y)
=l/{(x-y)+i(O(x)-O(y))} for real-valued functions (x) and, in [2],
he showed that C[] is of type 2 as long as II’ll=ess. sup I’(x) is
sufficiently small. Using this theorem he also. studied kernels

(1) C[h,](x,y)- 1 h{(x)--(Y)}x-y x-y
for complex-valued functions h(t) and real-valued functions (x). In
[5], R. Coifman-A. McIntosh-Y. Meyer showed that C[0] is of type 2
if II0’[[<oo. Using this theorem, R. Coifman-G. David-Y. Meyer
showed, in [4], the following

Theorem. If h(t) is infinitely differentiable, then C[h, ] is of
type 2 as long as []’ ]] < oo.

The purpose of this paper is to give a new proof of this theorem.
We shall deduce this theorem rom Calder6n’s theorem and so-called
"good 2 inequalities". The author expresses his thanks to.. Prof. A.
Uchiyama, through whose notebook the author learned recent
Calder6n’s lecture on C[].

2. Proof of Theorem. Without loss of generality we may

that h(t) has a compact support. Let /()= e-h(t)dt.assume
d-

Then we have formally

( 2 ) C[h, ](x, y)-- Const. ]()C[d’, ](x, y)d,
d-

and hence it is natural to investigate kernels K[]--C[d’, ] for real-

valued functions q(x). For a locally integrable function f(x), we put
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K[]*f(x)=sup (I;,<-.<, K[](x, y)f(y)dyl; 0e]}. We say that

K[]* is of weak type I if there exists a constant A such that, for any
integrable function f(x) and 20,
( 3 ) [{x;
where]. denotes the l-dimensional Lebesgue measure and

=[ If(x)ldx. The lower bound of such A’s is denoted by

Here are two lemmas necessary for the proof; Lemma I is easily
deduced from good inequalities [3].

Lemma 1. [[K[]l[<:Const.
Lemma 2 (Calder6n [2]). There exists an absolute constant B

such that IIK[]*llw=B as long as
We put p(a)=sup {[[K[4x]*[[ []’[[ga} (a>0). Using good ine-

qualities [3], we shall show the following inequality"
( 4 ) g()ACp(p)+(C+B) (>0),
where p=2/3 and C is an absolute constant.

Once (4) is known, we have, with an absolute constant M,
Const. (l+a) (a > 0). This inequality and Lemma I show that
[IK[4x]l[,._--<Const. {l + @’ ll + @’ I]}. The above theorem immediately
follows from this inequality.

From now we prove (4). If 0al, then Lemma 2 gives the
required inequality. Let al and @(x) satisfy @’ ll <= c. Given
real-valued integrable function f(x) with compact support, we put
(5) U(])---{x K[4x]*f(x)>}, a(2)--IU(2)l (]>0).
We fix for a while )0. Since K[4x]*f(x) is lower semi-continuous
and lim,._ K[]*f(x)=O, U(D is an open set with finite measure.
Hence we can write U()=LJT= I with a sequence //(])={I}__ of
mutually disjoint finite open intervals. Let I=(a, b) e /(). Then a
standard argument yields the following lemma. (See for example [3].)

Lemma 3. There exists an absolute constant C1 such that, for
any
( 6 ) Ix e I K[4x]*f(x)>q, f*(x)l<=r,(/lO,
where q=ll/lO, f*(x) denotes the maximal function [7, p. 4] of f(x),
( 7 ) r,(2/100, ’])=[x e I; K[4x]*(Zf)(x)>2/lO, f*(x)’2
and Z(x) is the characteristic function of I.

Lemma 4. There exists a real-valued function O(x) with
pa such that
( 8 ) r,(/100, ’2)<=r(/200, ’2)+4]I[/5
as long as 0’<=1/C, where C is an absolute constant.

Proof. Given ’0, we may assume that f*(d)<=’ for some d e I.
Since K[4x]*f=K[4x-(a)]*f=K[-4x+(a)]*f, we may assume that
(a)=0 and (b)>=0. Put (x)=(x)+c(x-a)/3. Then
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(a)----0 and (b)>_a[I[/3. Since K[4x]*f-K[]*f, we have r/(2/100, ’)
--r(2/100, ’). We define t*(x) by "the running waer" of t?(x)"

0 (x<a)
(9) O*(x)- inf ((x) _>_ and ’:>0 on [a, b]} (agx<__b)

(t*(b) (x> b).
Then t*(x) is a non-decreasing continuous function satisfying {x e I;
t*(x)(x)}{x e I; t*’(x)=0}. Since 118*’ll_<_2pa, 0*(a)--0 and t*(b)
>=1I]/3, we have [V]:>II]/4, where V={x e I;9*(x)--(x)}. For any
y e I-V, we have ](y)-t*(y)l-<21]’ll dis (y, V)<:4pa dis (y, V), where
dis (y, V) denotes the distance between y and V. Hence, for any
xeV,

(10) .I [K[](x,y)--g[o*](x,y)ll(Zf)(y)[dy

<: 4pa {dis (y, Y)/(x- y)}[(Zf)(y)]dy (- 4paM(x), say).

Now we put O(x)=O*(x)-pax. Then I]O’l]<_pa and K[O]*f=K[O*]*f.
Thus
(11) %(2/100, 72) r(2/100, 72)

[ V; K[]*(Zf)()2/lO0, .f*()721+lI-VI
[ V; K[O*]*(Zf)()2/200, f*()72]

ro(,/200, r,)+l e V;
Let us recall f*(d)’2. Since

4pa f M()d4pal[Zf[[Const, af*(d)]I[Const, ar]I[,

there exists an absolute constant . such that ] e V; 4paM()/200[
(C/100)a7[I]. Hence (11)gives (8) as long as O(rl/Ca. .E.D.

By Lemmas 3 and 4, we have

[ I K[q]*f())q, f*()72
r,(2/100, 2)+]I]/100r(/200, 72)+5[I[/6

as long as 0<7<=1/C, where C=max {C, C}. If f*(x)>7 for all
x e I, then r(2/200, ’)-0. If f*(d)<=72 for some d e I, then we have,
with an absolute constant C,

ro(2/200, 72){200p([] O’ [[)/} f [[, {Cp(p)/,}f*(d)[I[ C,7p(pcr)[I].
Let ;’0=l/{Ca+ lOOCp(pa)}. Then we have, for any I e 5/(2),

Ix e I; K[4x]*f(x))q2, f*(x)<=;’o,[<=r[I],
where r=6/7. Taking the summation over all I in /(2), we have

Ix; K[4x]*f(x)>q2, f*(x)_;’o,lra(2).
Hence
(12) a(q2) (’o)+ ra(2),
where (’o)=[x f*(x)>’o[. Note that ffoD<:{Const./’o}[lf[] ([7, p.
5]). Inequality (12) is valid with 2 replaced by 2/q (k>_l). Hence
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Since IIK[]*II is dominated by the upper bound of 2lx; K[+]*f(x)
>]/llf]l over all >0 and all real-valued integrable functions f(x)
with compact support, we have, with an absolute constant C,
_<_ Const./’0__< Cp(pa)+(Ca+B). Since +(x) is arbitrary as long as
II+’l]_<_a, we have (4). This completes the proof.
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