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55. On the Identification of the Intersection Form on
the Middle Homology Group with the Flat
Function via Period Mapping

By Kyoji SaArTo
RIMS, Kyoto University
(Communicated by Kunihiko KODAIRA, M. J. A.,, May 12, 1982)

§ 1. Introduction and the statement of the result. Let ¢: X—S8
be a universal unfolding of a function with an isolated critical point
(cf. (2.2)). In this situation, we introduced the concept of a primitive
form ¢©®, which is an element of the relative de-Rham cohomology
module of the map ¢: X—S, satisfying a certain system of bilinear
differential equations on S (cf. [3] (3.2)).

Using the primitive form ¢ (which automatically determines an
infinite sequence ¢®, k € Z of de-Rham cohomology classes), one defines
a period mapping. (For simplicity, in this note we assume that
n=dimension of the fiber X,=¢'(t), t € S of ¢ is even.) Namely it is
given as (cf. (2.4) v));

1.1) P:3—H*X,C), se8— {r cH(X, Z)—| corne c},

7(®
where S is the monodromy covering of S—D (D is the discriminant

divisor in S of the map ¢) and H*(X,, C) is the middle cohomology
group of a general fiber X, of o.

We have also introduced the concept of a flat function z on S as-
sociated with the primitive form {© by

1.2) dz=> KOW, L0, C™dt,  Bz=1—s)2
=1

(cf. (2.4) iv)).
Then, in this note, we prove the following
Theorem 1. Assume that the Poincaré duality ¢ on the middle
homology of the general fiber X, of ¢
1.3) ¢:H,X,,Z)»H"X,,Z)
18 non-degenerate. Or, equivalently, that the intersection pairing
9 1HX,2)xH(X,2), (G7)~a®, 7
18 non-degenerate.
Then there exist constant numbers c, s such that the following
diagram is commutative :

~ P
S i Hn(X“ C)

2(1—3)-1;\ /}

o
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where Q is the quadratic form on H*(X,, C) defined by

1.5) Q:ecH"(X, C)—~<{s7'e,e)eC.

For the proof in §2 we need to recall some basic concepts and
results about primitive forms for a universal unfolding of a hyper-
surface, which are developed in [2], [3]. The proof of Theorem 1,
given in § 8, is then a straightforward consequence of the algebraic
representation formula for the intersection form (cf. (2.4) vi)).

§2. Primitive forms for a universal unfolding of a function.
We recall several concepts and construction from [2], [3]. More
details are found in the references.

2.1) Let (Z, 0)—">(X ,00 be a Cartesian diagram between
e s
smooth varieties with base points 0. Assume that p, ¢ are submer-
sions of relative dimension n+1 and #,z are submersions of relative
dimension 1. Assume further that there are vector fields 4, and 4, on
Z and S respectively such that p,5,=4, and #'Oy={ge O,:5,9=0},
77 0r={g € Os: 6,9=0}.

For convenience we employ local coordinates at 0. Namely, let
t'=(, ---,t, be a local coordinate system for (T, 0) and t=(¢,,t") be
a local coordinate system for (S,0) such that 6,¢,=1, and (x,t")
=(Zgy +*+y Xy byy - -+, t,) are local coordinates for (X,0). Hence (x,t)
=(x, t,, t") are local coordinates for (Z,0), and §, and 4, are described
by a/at, in terms of these coordinates.

(2.2) Definition. A function F(x,t) on Z is a universal unfold-
ing of a function f(x):=F(x,0) if it satisfies i) oF/9t,=1 ii) oF [ox,,
---,0F oz, form a parameter system in ©,, iii) oF/dt, ---,0F [dt,
form Oy, free basis of O,/ (OF [0xy, - - -, 0F [02,)O 2,

If F(x,t) is given, let us denote by ¢ the composition of the map
#iFwn=0 : X=Z{F (2, t)=0} with P|rw.,-q: {F 2, t)=0}—-8. We shall
often not make the distinction between the map ¢: (X, 0)—(S, 0) and
the universal unfolding F'(z, t).

(2.3) Denote G:= i OT%={6 e, Der: [4, 6]1=0}.

= i

Definition. An element (9 elI'(S, HY), L :=¢,0%*dF,

N dp S5+ 2% N\ 0, 2% is called a primitive form if
D Vf9=0r-1)¢
ii) K®WL-0,F,0")=0 for k=1, 4§,0ed

iii) K®WF,-2,7,.L09)=0 for k=2, 4,0,0"€8

iv) K®Q@F,L00, 7,000 =0 for k=2, 45,8 ed.

Here, I is the covariant differentiation by the GauB-Manin connection,
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FE is the Euler vector field on S defined by t¢,6,—t,*d, (Where t,x6, is the
element of &s.t. (¢,x6)F=t, mod (0F /ox,, - - -, dF [0x,)), r is the smallest
exponent, K®, ke Z are higher residue pairings defined on =, HP (cf.
[1], [4]) and {® :=(F,)"C.
2.4) 1) @ induces a non-degenerate ©,-bilinear form,
J: GXG—>0Oy, &, )—>KOW LV, F,8¢0).

ii) ¢© induces an (,-endomorphism, N:G—¢G, by J(N§,d);
=K®@ 7,00, 7,£¢). In particular No,=7r5,. The eigenvalues of N
are called the exponents.

iii) ¢©® induces a torsion-free integrable connection F/:Der,
XG—G, by JW[:0,0"):=KOWF,£2,V,.L0). A coordinate system
, ---,t,) is called, flat, if V/(@/0t)=0, i=1, - - -, m.

iv) ¢© induces a flat function z on S by the relations dz:
=>"  KOW 5,0, {)dt,, Ez=(1—s)z, where s=n+1—2r=maximal
expouent-smallest exponent.

v) £ induces a period mapping,

P: g———)H"(X,, o), §|———>{T eH (X, Z)—> I go-n ¢ C}
r(®

where S is the m~onodromy covering of the fibration X—S, and ¢ is a
generic point of S. Here 7(3) is the imaLge of re H (X, Z) in H(X;, Z)
by the parallel translation for any § e S.

By definition v), the period map P is of maximal rank, iff there
exist no integral exponents.

vi) The intersection number I(y,7’) of (1.4) is expressed as fol-

lows;
m *
I(y, v)=¢c! (N—ﬁ)ij (n/2—2)<i) j (n/2-1)
@) tZ-'; 2/0t, Jr® ¢ ot, 7@ ¢

where c is a constant and (9/6t,)*, i=1, - - -, m is the dual basis of &
with respect to J of (2.4) i).

It follows directly from this expression that the pairing I is non-
degenerate iff there exist no integral exponents.

§3. A proof of Theorem 1. (8.1) Let A:S—H, X, C) be the
composition ¢~'P of (1.1) and (1.3).

Using Z-basis 7y, « - -, 7n of H,(X,, Z), define A%(3) by,

AG)=> Ay, forsedl.
4=1
(8.2) From the definitions of the pairing I of (1.4) and the map
A, one gets
IAG), D =<P(), 1) =j to-d  for se .
7(3)

3.3) Lett,.--,t,bea flat coordinate system such that 6,=4/0t,.
Let t¥, - - -, t* be the dual coordinate system w.r.t. J of (2.4)i). Then we
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have dz=dt¥. (.-dz=2 7, K(o)(Va/at;cC(q), (Ot =37, J(0/otF, d/at)dt¥
=dt¥).

(3.4) Now in the formula (2.4) vii), substitute y by A(%)
=>m, A 8y, and ¢/ by 1., k=1, - - -, m so that one obtains;

D ¢ j g0 = cI(A3), 1)
7%(8)

m _ Y P
= A3 (N_ﬁ)_J (n/2-2) (n/2-1)
‘él © 270t Juw ¢ oty Jnm ¢

By assumption on g, there exist no integral exponents, and therefore
the period map P is of maximal rank. Hence <Tk’P(§)>=j goe-n

15(%)
k=1, - .-, m may be regarded as coordinates for 5. Thus multiplying

the above by the inverse matrix of (3/dt} J E@2DY, ket enn,ms ONE gets,
7%(8)

i) o(r—2) Bt =S a(N-2)0 [ o,
2 j=1 77

2/ adt,
(Note that = (r—ﬁ) i‘ Tkj—, since E I gomz=n
2/=1 "0y, 1®
2/Jn®

In the formula ii) we put ¢=1. Noting (2.4) ii) iv) and (3.3), we
get the last formula,

i) c(v—%)—lz=§l 4@ [ =IAE, AG) (32D,

75(8)
This completes the proof of Theorem 1.

References

[1] Namikawa, Y.: Higher residues associated with an isolated hypersurface
singularity (to appear in Symposia in Mathematics, Kinokuniya-North
Holland, Tokyo (1981)).

[2] Saito, K.: On the periods of primitive integrals. Harvard (1980) (preprint).

[31] Primitive forms for a universal unfolding of a function with an
isolated critical point. J. Fac. Sci. Univ. Tokyo, Sect. IA, 29, 1-18 (1982).

The higher residue pairings K for a family of hypersurface

singular points (to appear in Proceeding of Sympo&ia in Pure Mathema-

tics, A.M.S., Arcata, 1981).

[4]




