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1. Introduction and the statement of the result. Le " X-S
be a universal unfolding o a function wih an isolated critical poin
(el. (2.2)). In his situation, we introduced he eoneep of a primitive
form (0), which is an element of the relative de-Rham eohomology
module o the map ’XS, satisfying a certain system of bilinear
differential equations on S (el. [3] (3.2)).

Using the primitive form (0) (which automatically determines an
infinite sequence (), k Z of de-Rham eohomology classes), one defines
a period mapping. (For simplicity, in this note we assume that
n=dimension o the fiber X=-(t), t
given as (el. (2.4) v));

(1.1) P" SH(X, C), eS r H(X,Z) /-
r()

where S is the monodromy covering of S-D (D is the diseriminant
divisor in S of the map ) and H(X, C) is the middle eohomology
group of a general fiber X of

We have also introduced he concept of a flat function z on S as-
sociated with he primitive form (0) by

(1.2) dz= K()(/,(-), ())dt, Ez=(1-s)z
i=l

(cf. (2.4) iv)).
Then, in this note, we prove the following
Theorem 1. Assume that the Poincard duality a on the middle

homology of the general fiber X of
(.3) q" H(Xt, Z)H(X, Z)

is non-degenerate. Or, equivalently, that the intersection pairing
(1.4) I" H(X, Z)

is non-degenerate.
Then there exist constant numbers c, s such that the following

diagram is commutative"
P

S .> H(X, C)

C
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where Q is the quadratic form on H(X, C) defined by
(1.5) Q" e e H(X, C)(a-e, e e C.
For the proof in 2 we need to recall some basic concepts and

results about primitive forms for a universal unfolding of a hyper-
surface, which are developed in [2], [3]. The proof of Theorem 1,
given in 3, is then a straightforward consequence of the algebraic
representation formula for the intersection form (cf. (2.4) vi)).

2. Primitive forms for a universal unfolding of a function.
We recall several concepts and construction from [2], [3]. More
details are found in the references.

(2.1) Let (Z, 0) >(X, 0) be a Cartesian diagram between

(S, 0)---->(T, 0)

smooth varieties with base points 0. Assume that p, q are submer-
sions of relative dimension n/ 1 and , are submersions of relative
dimension 1. Assume further that there are vector fields/ and/ on
Z and S respectively such that p,l-tJl and
u-’Or--{g e Os" ,g--0}.

For convenience we employ local coordinates at 0. Namely, let
t’-(t, ..., t) be a local coordinate system or (T, 0) and t=(t, t’) be
a local coordinate system for (S, 0) such that /,t,=l, and (x,t’)
=(x0, ..., Xn, t., ..., t) are local coordinates for (X, 0). Hence (x, t)
=(x, t,, t’) are local coordinates for (Z, 0), and , and/, are described
by 3/3t, in terms of these coordinates.

(2.2) Definition. A function F(x, t) on Z is a universal unfold-
ing of a function f(x)’--F(x, 0) if it satisfies i) F/St=l ii) F/xo,
.,r/xn form a parameter system in 0,0 iii) F/3t,,...,F/t

form Or,o free basis of Oz,o/(SF/Sxo,..., F/$,)Oz,o.
If F(x, t) is given, let us denote by the composition of the map

7] -l{F(x,t) =0} X-{F(x, t)=0} with Pii(,t)=o {F(x, t)=O}S. We shall
often not make the distinction between the map ?’(X, 0)(S, 0) and
the universal unfolding F(x, t).

(2.3) Denote ’--, Or 8 --{/ e z. Der [, ] 0}.

Definition. An element (o e F(S, q()), ( .9}+/dF
/k d./2}-+9/k@.9 is called a primitive form if

i) z(0 (r-1)
ii) K()(P’(-), lz,(-))=0 for k>__l, /,

iii) K()(IrI7,(-), z,,5(-))=0 for k__>2, /,/’,
iv) K()(tV-, ,(-1))-’’-0 for k=2, /,

Here, z is the covariant differentiation by the Gauf3-Manin connection,
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E is the Euler vector field on S defined by t,5-t.5 (where t.5 is the
element of s.t. (t.5)F=_t rood (3F/3xo, ..., F/xn)), r is the smallest
exponent, K(), k e Z are higher residue pairings defined on .) (cf.
[1], [4]) and (). =(,)(0).

(2.4) i) (0) induces a non-degenerate Or-bilinear form,
J"X 0, (,’): K()((-),

ii) (0) induces an Or-endomorphism, N", by J(N, ’)
=K()(tg{(-), g,{(-:)). In particular N=r. The eigenvalues of N
are called the exponents.

iii) {(0) induces a torsion-free integrable connection /’Derr
X ZZ, by J(/6’, ")’=K(’)(2g,{(-), ,,{(-:)). A coordinate system
(t, ..., t) is called, fiat, if /(/at)=O, i=1, ..., m.

iv) 0) induces a fiat function z on S by the relations dz"
)d Ez (1 s)z, where s =n+ 1 2r maximal

exponent-smallest exponent.
v) (0) induces a period mapping,

P" S >H(Xt, C), " > r e Hn(Xt,Z) (n/2-,) e C
r()

where S is the monodromy covering of the fibration XS, and t is a
generic point of S. Here r() is the image of e H(X,, Z) in H(X, Z)
by the parallel translation for any e S.

By definition v), the period map P is of maximal rank, iff there
exist no integral exponents.

vi) The intersection number I(y, y’) of (1.4) is expressed as fol-
lows

I(, ’)=c- N- n (/_) *
= r() ’ ()

where c is a constant and (3/3t)*, i=1,..., m is the dual basis
with respect to J of (2.4) i).

It follows directly from this expr-ession that the pairing I is non-
degenerate iff there exist no integral exponents.. A proof of Theorem 1. (3.1) Let A:SH(X,C) be the
composition a-P of (1.1) and (1.3).

Using Z-basis , ..., y of H(Xt, Z), define A() by,

A(a)= A() for a e S.
i=l

(3.2) From the definitions of the pairing I of (1.4) and the map
A, one gets

I(A(), r)= P(), r)= /- for e S.

(8.8) Le t, ., t be a flat coordinate system such
Leg t, .., t be he dual coordinate system w.r.. J
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(o)(- (O))dt,have dz=dt* (’. dz--.=l K ,,v/e -’), ---E=l J(3/3t*, 3/t,)dt
=dt).

(3.4) Now in the formula (2.4) vii), substitute r by A()
?A*()r, and ’ by r, k= 1, ..., m so that one obtains;

i) c[ (/-)=cI(A(), y,)
Jr()

By assumption on a, there exist no integral exponents, and therefore

the period map P is of maximal rank. Hence @,P()}=[ 5(/-)
J()

k=l, ..., m may be regarded as coordinates for . Thus multiplying

the above by the inverse matrix of (/t (/-)),.,...,, one gets,
J()

Note that E= r-
(r--)f :(n/-’)fork=l,...,m.)ra()

In the formula ii) we put i=1. Noting (2.4) ii) iv) and (3.3), we
get the last formula,

iii) c(r )-’ 1z= A() (n/2-1)=HA(b), A(b)) (’." (3.2)).

This completes the proof of Theorem 1.
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