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1. Introduction. LetF:R"—R"be a continuously differentiable
mapping. Consider an n-dimensional autonomous differential equa-
tion of the form

du .
(1) W_F(u), ue R".
Suppose that (1) has at least two equilibrium points # and v. Under
some conditions it is shown that the corresponding difference equa-
tions (Euler’s scheme) for (1) are chaotic in the sense of Li and Yorke
[1]. The theorem of Marotto [2] will be used to prove the existence
of chaos. More precisely, it will be shown that both % and 7 are snap-
back repellers.

This work is motivated by a theorem proven by Yamaguti and
Matano [3] concerning scalar differential equations. I would like to
thank Prof. M. Yamaguti for his interest and encouragement.

2. Notation and theorem. Euler’s difference scheme for (1)
takes the form

witt =uf+ AEF (uf, uf, - - -, up)
(2) : :
uﬁ“-:%’,i-i'thn(uf, /u’;c’ t 9'“:3)
that is,
wrt =yt 4 AtF (u®).
Letting dt=s and G,=I1d+sF', (2) implies
(3) ut =G, (ub).

For differentiable function f, let f'(x) denote the Jacobian matrix
of f at x € R" and det f’(x) its determinant. Note that Gy(x) =E+ sF'(x)
for all x € R” where E is a unit matrix. Let B(x, r) denote the closed
ball in R" of radius » centered at 2 and ||z| be the usual Euclidean
norm of z in R*. For a square matrix A, let A* denote the adjoint
matrix of A. Our theorem can now be stated as follows:

Theorem. Let F be continuous differentiable in R". Suppose
there exist W=7 such that F(w)=F(®)=0, det F'(@)+0 and det F"(v) ~0.
Then there exists a positive constant ¢ such that for any s>c the
difference equation (8) is chaotic in the sense of Li and Yorke.

Remark. The condition in the above theorem is a stable property
under small perturbations of F'.
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3. Proof of the theorem. Before proving theorem we shall
present three preliminary lemmas.

Lemma 1. There exist r,>0 and ¢, >0 such that det Gi(x)+#0 for
any s>c¢, and any x € B(#@,r)UB®@, r,).

Proof. From the assumption on F, we can find »,>0 such that
det F'(x)#0 for any x € B(@,r,) UB(@,r,). If the lemma is false, then
there exist two sequences s,>0 and =z, € B(#, r,) UB(w,r,) such that
s,—co as n—oo and det G, (x,)=0. Since G;=E+sF’, we have
det [E/s,+F'(2,)]=0. Without loss of generality we can assume that
x,—x* ¢ B(@, r,)UB(®@,r,) as n—oo. Thus, letting » tend to infinity,
we find that det F'(x*)=0. This contradiction completes the proof.

Lemma 2. For any 6>1, there exist r,>0 and c¢,(6) >0 such that
1G(®)—G W= l|lx—y| for any s>c,(3) and any x,y € B, r,).

Proof. Since det F'(w)*F'(w)=(det F'(w))*+=0, the least eigenvalue
2mim Of & positive-semidefinite symmetric matrix F'(w)*F’(w) is positive.
Hence

|F'@)2||> V2, |||  for all z e R",
and there exists 7,>0 such that

| F"(2)— F'(%) |1<%«/z‘ma for any z € B@, r,).
Therefore

|F(x)—F@)| = || [ F’(y+t(x-y))(w—y)dt“

> | F@@—1)| —-%manx—-yn

2%«/§$Ilw—yll for any z,y € B, r,).
Hence
1G(2)—G (W ||=s |F@)—F@)|—|z—y|
s
2( 2= 1)z =y 28 |s—]
where s> ¢,(0) = «/sz - (14-9).

Lemma 3. For a sufficiently small open neighbourhood U of %
and any bounded set W, there exists c,(U, W) >0 such that the equation
G,(w)=w has at least one solution uwe U for any s>c(U, W) and any
weW.

Proof. Without loss of generality we can assume that F|; is a
homeomorphism. Since % is an isolated zero in U, we have

deg (0, F', U)=sign det F’(m)=1 or —1.
Now assume that pu,+ F(u,) = pw, for some u, € U, w, e W and y,>0.
Then
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e IF@l - infeoy IFGD)
0 =

|Uo—Wol — SUPueovwew |[U—w]|
Hence we obtain pw & (uId+F)(@U) for any we W and any 0<pu
<u(U, W).

Consider now the homotopy vz +F(z), (v, %) € [0, ] X U and by the

homotopy property of mapping degree we have

deg (nw, pld+F, U)=deg (0, F', U)=0.
Therefore there exists € U such that

(eld+ F)(w)=pw, that is, G, (w)=w.
This completes the proof.

Note that the similar arguments hold for 7. Now we are ready
for the proof of the theorem. Select sufficiently small open neighbour-
hoods U,V of u, v respectively such that UNV=¢ and Lemma 3 holds
for both @ and ». Let r*=min (v, 7)) and ¢*=max (¢, ¢,(0), ¢s(U, V),
¢,(V,U)). Without loss of generality we can assume that

UcB@,r*) and VCB(®@,r*).
By Lemma 3, for any s>c*, there exist v,e V and u, e U such that
G,(v)=u and G,u,)=v,. Since det Gi(u,)+0 and det G;(v,)+#0 by
Lemma 1, we can find »,>0 such that B(u,, r,)CB(@, r*), G,(B(u,, 1))
cV, GB(u,r))CU, and both G,|zw,,., and G, ;sw,r, are homeo-
morphisms. Finally define compact sets {B,}_..c.<. as follows:
B,=G(B(u,r,), B,=G{(B(u,r,)) and
B_,.=G;¥B(u,, ;) for k>0,
gince G;* is well-defined by Lemma 2. This shows that % is a snap-
back repeller. Obviously same argument holds for 7.

4. Application. We shall attempt to apply our theorem to

quadratic differential systems of the form

d /u'l (0, —byu,— e — by U,

Uy, (@ —=bpyty— -+ - — b ),

These systems include prey-predator and competition models which
are discussed in [4]. Let A=(a,, ---,a,), B=(,) and O=(0, - - -, 0).
If A0 and det B0, then one can easily show that (4) has at least
two equilibrium points O and B-'A. Moreover det F'(0)=a,- - -a, and
det F/(B-'A)=(—1)"u,- - -u, det B where B-'A= (%, - - -,%,). Therefore
the conclusion of the theorem holds for (4) if a,---a,%,- - -%,#0 and
det B=~0.

Finally note that the condition that F' has at least two zeros can
be weakened in some cases.
For example,
(5) dx/dt=1—e", xeR.
This scalar differential equation has a unique equilibrium point 0

=u(U, W)>0.
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which is asymptotically stable. However one can easily show that
there exists a positive constant ¢, such that for each 4¢>¢, Euler’s
scheme for (5) is chaotic in some invarient interval.
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