Euler's Finite Difference Scheme and Chaos in Rⁿ

By Masayoshi HATA Department of Mathematics, Kyoto University

(Communicated by Kôsaku Yosida, M. J. A., May 12, 1982)

1. Introduction. Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a continuously differentiable mapping. Consider an n-dimensional autonomous differential equation of the form

$$\frac{du}{dt} = F(u), \qquad u \in R^n.$$

Suppose that (1) has at least two equilibrium points \bar{u} and \bar{v} . Under some conditions it is shown that the corresponding difference equations (Euler's scheme) for (1) are chaotic in the sense of Li and Yorke The theorem of Marotto [2] will be used to prove the existence of chaos. More precisely, it will be shown that both \overline{u} and \overline{v} are snapback repellers.

This work is motivated by a theorem proven by Yamaguti and Matano [3] concerning scalar differential equations. I would like to thank Prof. M. Yamaguti for his interest and encouragement.

2. Notation and theorem. Euler's difference scheme for (1) takes the form

(2)
$$\begin{cases} u_1^{k+1} = u_1^k + \Delta t F_1(u_1^k, u_2^k, \dots, u_n^k) \\ \vdots & \vdots \\ u_n^{k+1} = u_n^k + \Delta t F_n(u_1^k, u_2^k, \dots, u_n^k) \end{cases}$$

that is,

$$u^{k+1} = u^k + \Delta t F(u^k)$$
.

Letting $\Delta t = s$ and $G_s = Id + sF$, (2) implies

(3)
$$u^{k+1} = G_s(u^k).$$

For differentiable function f, let f'(x) denote the Jacobian matrix of f at $x \in \mathbb{R}^n$ and det f'(x) its determinant. Note that $G'_s(x) = E + sF'(x)$ for all $x \in \mathbb{R}^n$ where E is a unit matrix. Let B(x, r) denote the closed ball in R^n of radius r centered at x and ||x|| be the usual Euclidean norm of x in R^n . For a square matrix A, let A^* denote the adjoint matrix of A. Our theorem can now be stated as follows:

Theorem. Let F be continuous differentiable in \mathbb{R}^n . there exist $\overline{u} \neq \overline{v}$ such that $F(\overline{u}) = F(\overline{v}) = 0$, $\det F'(\overline{u}) \neq 0$ and $\det F'(\overline{v}) \neq 0$. Then there exists a positive constant c such that for any s>c the difference equation (3) is chaotic in the sense of Li and Yorke.

Remark. The condition in the above theorem is a stable property under small perturbations of F.

3. Proof of the theorem. Before proving theorem we shall present three preliminary lemmas.

Lemma 1. There exist $r_1>0$ and $c_1>0$ such that $\det G'_s(x)\neq 0$ for any $s>c_1$ and any $x\in B(\overline{u},r_1)\cup B(\overline{v},r_1)$.

Proof. From the assumption on F, we can find $r_1 > 0$ such that $\det F'(x) \neq 0$ for any $x \in B(\overline{u}, r_1) \cup B(\overline{v}, r_1)$. If the lemma is false, then there exist two sequences $s_n > 0$ and $x_n \in B(\overline{u}, r_1) \cup B(\overline{v}, r_1)$ such that $s_n \to \infty$ as $n \to \infty$ and $\det G'_{s_n}(x_n) = 0$. Since $G'_s = E + sF'$, we have $\det [E/s_n + F'(x_n)] = 0$. Without loss of generality we can assume that $x_n \to x^* \in B(\overline{u}, r_1) \cup B(\overline{v}, r_1)$ as $n \to \infty$. Thus, letting n tend to infinity, we find that $\det F'(x^*) = 0$. This contradiction completes the proof.

Lemma 2. For any $\delta > 1$, there exist $r_2 > 0$ and $c_2(\delta) > 0$ such that $||G_s(x) - G_s(y)|| \ge \delta ||x - y||$ for any $s > c_2(\delta)$ and any $x, y \in B(\overline{u}, r_2)$.

Proof. Since det $F'(\overline{u})*F'(\overline{u})=(\det F'(\overline{u}))^2\neq 0$, the least eigenvalue λ_{\min} of a positive-semidefinite symmetric matrix $F'(\overline{u})*F'(\overline{u})$ is positive. Hence

$$||F'(\overline{u})x|| \ge \sqrt{\lambda_{\min}} ||x||$$
 for all $x \in \mathbb{R}^n$,

and there exists $r_2 > 0$ such that

$$\|F'(x)-F'(\overline{u})\| < \frac{1}{2}\sqrt{\lambda_{\min}}$$
 for any $x \in B(\overline{u}, r_2)$.

Therefore

$$\|F(x)-F(y)\| = \left\|\int_0^1 F'(y+t(x-y))(x-y)dt\right\|$$

$$\geq \|F'(\overline{u})(x-y)\| - \frac{1}{2}\sqrt{\lambda_{\min}}\|x-y\|$$

$$\geq \frac{1}{2}\sqrt{\lambda_{\min}}\|x-y\| \quad \text{for any } x,y \in B(\overline{u},r_2).$$

Hence

$$\|G_s(x) - G_s(y)\| \ge s \|F(x) - F(y)\| - \|x - y\|$$

$$\ge \left(\frac{s}{2}\sqrt{\lambda_{\min}} - 1\right) \|x - y\| \ge \delta \|x - y\|$$

where
$$s\!>\!c_{\scriptscriptstyle 2}\!(\delta)\!\equiv\!\frac{2}{\sqrt{\lambda_{\scriptscriptstyle \min}}}(1\!+\!\delta).$$

Lemma 3. For a sufficiently small open neighbourhood U of \overline{u} and any bounded set W, there exists $c_3(U,W)>0$ such that the equation $G_s(u)=w$ has at least one solution $u\in U$ for any $s>c_3(U,W)$ and any $w\in W$.

Proof. Without loss of generality we can assume that $F|_{\overline{v}}$ is a homeomorphism. Since \overline{u} is an isolated zero in \overline{U} , we have

$$deg(0, F, U) = sign det F'(\overline{u}) = 1 \text{ or } -1.$$

Now assume that $\mu_0 u_0 + F(u_0) = \mu_0 w_0$ for some $u_0 \in \partial U$, $w_0 \in W$ and $\mu_0 > 0$. Then

$$\mu_0 = \frac{\|F(u_0)\|}{\|u_0 - w_0\|} \ge \frac{\inf_{u \in \partial U} \|F(u)\|}{\sup_{u \in \partial U, w \in W} \|u - w\|} \equiv \mu(U, W) > 0.$$

Hence we obtain $\mu w \in (\mu Id + F)(\partial U)$ for any $w \in W$ and any $0 \le \mu \le \mu(U, W)$.

Consider now the homotopy $\nu x + F(x)$, $(\nu, x) \in [0, \mu] \times \overline{U}$ and by the homotopy property of mapping degree we have

$$\deg(\mu w, \mu Id + F, U) = \deg(0, F, U) \neq 0.$$

Therefore there exists $u \in U$ such that

$$(\mu Id + F)(u) = \mu w$$
, that is, $G_{1/\mu}(u) = w$.

This completes the proof.

Note that the similar arguments hold for \overline{v} . Now we are ready for the proof of the theorem. Select sufficiently small open neighbourhoods U, V of $\overline{u}, \overline{v}$ respectively such that $U \cap V = \phi$ and Lemma 3 holds for both \overline{u} and \overline{v} . Let $r^* = \min(r_1, r_2)$ and $c^* = \max(c_1, c_2(\delta), c_3(U, V), c_3(V, U))$. Without loss of generality we can assume that

$$U \subset B(\overline{u}, r^*)$$
 and $V \subset B(\overline{v}, r^*)$.

By Lemma 3, for any $s>c^*$, there exist $v_s \in V$ and $u_s \in U$ such that $G_s(v_s)=\overline{u}$ and $G_s(u_s)=v_s$. Since $\det G_s'(u_s)\neq 0$ and $\det G_s'(v_s)\neq 0$ by Lemma 1, we can find $r_s>0$ such that $B(u_s,r_s)\subset B(\overline{u},r^*)$, $G_s(B(u_s,r_s))\subset V$, $G_s^2(B(u_s,r_s))\subset U$, and both $G_s|_{B(u_s,r_s)}$ and $G_s|_{G_s(B(u_s,r_s))}$ are homeomorphisms. Finally define compact sets $\{B_k\}_{-\infty < k \leq 2}$ as follows:

$$B_1 = G_s(B(u_s, r_s)), \quad B_2 = G_s^2(B(u_s, r_s))$$
 and $B_{-k} = G_s^{-k}(B(u_s, r_s))$ for $k \ge 0$,

since G_s^{-k} is well-defined by Lemma 2. This shows that \overline{u} is a snap-back repeller. Obviously same argument holds for \overline{v} .

4. Application. We shall attempt to apply our theorem to quadratic differential systems of the form

$$(4) \qquad \frac{d}{dt} \binom{u_1}{\vdots} = F(u_1, \dots, u_n) = \binom{(a_1 - b_{11}u_1 - \dots - b_{1n}u_n)u_1}{\vdots} \cdot \binom{(a_1 - b_{11}u_1 - \dots - b_{1n}u_n)u_1}{\vdots}$$

These systems include prey-predator and competition models which are discussed in [4]. Let $A=(a_1,\dots,a_n)$, $B=(b_{ij})$ and $O=(0,\dots,0)$. If $A\neq O$ and det $B\neq 0$, then one can easily show that (4) has at least two equilibrium points O and $B^{-1}A$. Moreover det $F'(O)=a_1\dots a_n$ and det $F'(B^{-1}A)=(-1)^n\overline{u}_1\dots\overline{u}_n$ det B where $B^{-1}A=(\overline{u}_1,\dots,\overline{u}_n)$. Therefore the conclusion of the theorem holds for (4) if $a_1\dots a_n\overline{u}_1\dots\overline{u}_n\neq 0$ and det $B\neq 0$.

Finally note that the condition that F has at least two zeros can be weakened in some cases.

For example,

$$(5) dx/dt = 1 - e^x, x \in R.$$

This scalar differential equation has a unique equilibrium point 0

which is asymptotically stable. However one can easily show that there exists a positive constant c_0 such that for each $\Delta t > c_0$ Euler's scheme for (5) is chaotic in some invarient interval.

References

- [1] T.-Y. Li and J. A. Yorke: Period three implies chaos. Amer. Math. Monthly, 82, 985-992 (1975).
- [2] F. R. Marotto: Snap-back repellers imply chaos in Rⁿ. J. Math. Anal. Appl., 63, 199-223 (1978).
- [3] M. Yamaguti and H. Matano: Euler's finite difference scheme and chaos. Proc. Japan Acad., 55A, 78-80 (1979).
- [4] S. Ushiki, M. Mamaguti, and H. Matano: Discrete population models and chaos. Lect. Notes in Num. Appl. Anal., 2, 1-25 (1980).