19. The Stokes Operator in L_{r} Spaces

By Yoshikazu GigA
Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, m. J. A., Feb. 12, 1981)

Introduction. In this paper we shall report that the Stokes operator generates a bounded analytic semigroup of class C_{0} in L_{r} spaces. Moreover, we shall decide domains of fractional powers of the Stokes operator. To show these we shall construct the resolvent of the Stokes operator, using pseudodifferential operators.

Let D be a bounded domain in R^{n} with the smooth boundary S. Let $1<r<\infty$ and let X_{r} be the closure in $\left(L_{r}(D)\right)^{n}$ of all smooth solenoidal vector fields with compact supports in D. Then there exists the continuous projection P_{r} from $L_{r}(D)=\left(L_{r}(D)\right)^{n}$ onto X_{r}; see Fuji-wara-Morimoto [5]. We denote by $W_{r}^{m}(D)$ the Sobolev space of order m. Set $W_{r}^{m}(D)=\left(W_{r}^{m}(D)\right)^{n}$. Then we define the Stokes operator by $A_{r}=-P_{r} \Delta\left(\Delta=\partial_{x_{1}}^{2}+\cdots+\partial_{x_{n}}^{2}\right)$ whose domain is

$$
D\left(A_{r}\right)=\left\{w \in W_{r}^{2}(D) \cap X_{r}:\left.w\right|_{s}=0\right\} .
$$

Let $\varepsilon>0, \omega \geqq 0$ and let $\Sigma_{\varepsilon, \omega}$ denote the set of $\lambda \in C$ such that $|\arg \lambda| \leqq \pi-\varepsilon$, $|\lambda|>\omega$. Then we have

Theorem 1. For any $\varepsilon>0$ there exists a constant $C_{6, r}$ independent of $f \in X_{r}$ and of $\lambda \in \Sigma_{s, 0}$ such that

$$
\begin{equation*}
\left\|\left(\lambda+A_{r}\right)^{-1} f\right\| \leqq C_{\epsilon, r}|\lambda|^{-1}\|f\|, \tag{1}
\end{equation*}
$$

where $\left\|\|\right.$ denotes the norm of $L_{r}(D)$. Consequently, $-A_{r}$ generates a bounded analytic semigroup of class C_{0} in X_{r}.

Remark. This result is partially known by Solonnikov [14]; he proved (1) for $|\arg \lambda| \leqq \delta+\pi / 2$, where $\delta \geqq 0$ is small. Our result is new in the following two points:
i) We prove that the estimate (1) holds for larger domain of λ, that is, $\lambda \in \Sigma_{\varepsilon, 0}$ for any positive ε.
ii) We construct the resolvent $\left(\lambda+A_{r}\right)^{-1}$ explicitly. This enables us to describe the domain of fractional power A_{r}^{α} of A_{r}. For the case of the Laplace operator the corresponding result is well known; see Fujiwara [4] and Seeley [12].

By Theorem 1 we can define A_{r}^{σ}. Concerning A_{r}^{σ} we have
Theorem 2. For any $\varepsilon>0$ there exists a constant $M_{\varepsilon, r}$ independent of $f \in X_{r},-1 \leqq a<0, b \in \boldsymbol{R}$ such that

$$
\left\|A_{r}^{a+i b} f\right\| \leqq M_{e, r} e^{e \mid \delta}\|f\|, \quad(i=\sqrt{-1})
$$

This implies, like Kato [6],

$$
\begin{equation*}
D\left(A_{r}^{\alpha}\right)=\left[X_{r}, D\left(A_{r}\right)\right]_{\alpha}, \quad 0<\alpha<1, \tag{2}
\end{equation*}
$$

where [,] denotes the complex interpolation of two Banach spaces. Let $B_{r}=-\Delta$ with $D\left(B_{r}\right)=\left\{w \in W_{r}^{2}(D):\left.w\right|_{s}=0\right\}$. Then, by (2) we have

Theorem 3. $D\left(A_{r}^{\alpha}\right)=X_{r} \cap D\left(B_{r}^{\alpha}\right), \quad 0<\alpha<1$.
This generalizes the result in Fujita-Morimoto [3]; they proved Theorem 3 when $r=2$.

Theorems 1 and 3 are useful in treating the initial value problem for the Navier-Stokes equations ; see Sobolevskii [13], Fujita-Kato [2], Kato-Fujita [7], Solonnikov [14], Miyakawa [10].
§ 1. The resolvent of the Stokes operator. To show Theorems 1 and 2 it is essential to construct the resolvent $\left(\lambda+A_{r}\right)^{-1}$. We can transform the equation $\left(\lambda+A_{r}\right) u=f$ in X_{r} into the following Stokes equations:

$$
\begin{array}{rlll}
(\lambda-\Delta) u+\nabla p=f & \text { in } & D, \\
\operatorname{div} u=0 & \text { in } & D, \tag{S}\\
\left.u\right|_{s}=0 & \text { on } & S,
\end{array}
$$

where p is some scalar function. Since f determines u, we denote u by $u=G_{\lambda} f$. When $\lambda=0$, Odqvist [11] constructed the kernel functions of G_{0}; see, for the details, Ladyzhenskaya [9] and the papers cited there.

To construct the resolvent G_{2} we use the potential theoretical discussions. Set

$$
\begin{equation*}
k_{\lambda}^{i j}(\xi)=\left(\delta^{i j}-\xi_{i} \xi_{j} /|\xi|^{2}\right) /\left(\lambda+|\xi|^{2}\right), \quad \xi \in \boldsymbol{R}^{n}, \quad 1 \leqq i, j \leqq n \tag{3}
\end{equation*}
$$

where $\delta^{i j}$ denotes Kronecker's delta and $|\xi|^{2}=\xi_{1}^{2}+\cdots+\xi_{n}^{2}$. Identify f with its extension to R^{n} which vanishes outside D. Then we define the hydrodynamic potential of f by

$$
\left(K_{\lambda} f\right)(x)=\left(\mathscr{F}^{-1} k_{\lambda_{2}} f f\right)(x),
$$

where \mathscr{F} denotes the Fourier transformation with respect to x. We can easily see that the volume potential $u^{\prime}=K_{\lambda} f$ satisfies the equations

$$
\begin{array}{rll}
(\lambda-\Delta) u^{\prime}+\nabla p^{\prime}=f & \text { in } \quad \boldsymbol{R}^{n}, \tag{K}\\
\operatorname{div} u^{\prime}=0 & \text { in } \quad \boldsymbol{R}^{n},
\end{array}
$$

where p^{\prime} is some scalar function on \boldsymbol{R}^{n}. Let $z=N \varphi$ satisfy

$$
\Delta z=0 \quad \text { in } \quad D,
$$

$$
\begin{equation*}
\left.\frac{\partial z}{\partial \nu}\right|_{S}=\varphi \quad \text { on } \quad S, \quad \int_{D} z(x) d x=0 \tag{N}
\end{equation*}
$$

where ν_{x} denotes the unit interior normal vector to S at $x \in S$. Let \langle,$\rangle be the standard inner product in R^{n}$. Let $W_{r, r}^{s}(S)$ be the set of $g \in W_{r}^{s}(S)$ satisfying $\langle g, \nu\rangle=0$. Let $v=V_{\lambda} g$ be the solution of the equations

$$
\begin{align*}
(\lambda-\Delta) v+\nabla q & =0 \quad \text { in } \quad D, \\
\operatorname{div} v & =0 \quad \text { in } D, \\
\left.v\right|_{S} & =g \in W_{r, r}^{0}(S) \quad \text { on } S, \tag{T}\\
\left\langle\left. v\right|_{s}, \nu\right\rangle & =0 \quad \text { on } S,
\end{align*}
$$

where q is some scalar function ; we call this problem (T) the Dirichlet problem with tangential data. Set

$$
M_{\lambda} f=\gamma_{S} K_{\lambda} f-\gamma_{S} \nabla N\left\langle\nu, \gamma_{S} K_{\lambda} f\right\rangle,
$$

where $\gamma_{s} w=\left.w\right|_{s}$. Then, by the definition of N we have $\left\langle M_{2} f, \nu\right\rangle=0$. By (S), (K), (N), (T) we can easily prove

Proposition 1. $G_{\lambda} f=K_{\lambda} f-\nabla N\left\langle\nu, \gamma_{s} K_{\lambda} f\right\rangle-V_{\lambda} M_{\lambda} f$.
This procedure is found in Fabes-Lewis-Riviere [1]. Our next problem is to constract V_{λ}.
§2. Pseudodifferential operators. In order to construct V_{λ} we introduce a symbol class of pseudodifferential operators with a parameter λ.

Definition. Let m and k be real numbers. Then we denote by $S^{m ; k}\left(\boldsymbol{R}^{n}\right)$ the set of all $p_{\lambda} \in C^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{n}\right)(\lambda \in \boldsymbol{C} \backslash(-\infty, 0])$ such that for all multi-indices α, β and positive numbers ε, ω
$C_{\alpha, \beta, \varepsilon, \omega}=\sup \left\{\langle\xi\rangle^{|\alpha|-m}\langle\lambda ; \xi\rangle^{-k}\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} p_{\lambda}(x, \xi)\right|:(x, \xi) \in \boldsymbol{R}^{n} \times \boldsymbol{R}^{n}, \lambda \in \Sigma_{c, \omega}\right\}$
is finite; here $\langle\lambda ; \xi\rangle$ denotes $\left(|\lambda|+|\xi|^{2}+1\right)^{1 / 2}$ and $\langle\xi\rangle=\langle 0 ; \xi\rangle$.
Example. Let $k_{\lambda}(\xi)$ be as in (3). Let $\varphi(s) \in C^{\infty}(\{s \geqq 0\})$ satisfy

$$
\varphi(s)=\left\{\begin{array}{l}
0: 0 \leqq s \leqq 1 \\
1: 2 \leqq s
\end{array}\right.
$$

Set $\psi(\xi)=\varphi(|\xi|)$. Then we get $\psi k_{\lambda}(\xi) \in S^{0 ;-2}\left(\boldsymbol{R}^{n}\right)$.
When a linear operator $P_{\lambda}: \mathcal{S} \rightarrow \mathcal{S}$ has the expression

$$
\left(P_{\lambda} w\right)(x)=\frac{1}{(2 \pi)^{n}} \int e^{i x \xi} p_{\lambda}(x, \xi)(\mathscr{F} w)(\xi) d \xi, \quad w \in \mathcal{S}
$$

with $p_{\lambda}(x, \xi) \in S^{m ; k}\left(\boldsymbol{R}^{n}\right)$, we call P_{λ} a pseudodifferential operator with its total symbol $\sigma\left(P_{\lambda}\right)=p_{\lambda}(x, \xi)$. Let Q_{λ} be another pseudodifferential operator with the total symbol $q_{\lambda} \in S^{m^{\prime} ; k^{\prime}}\left(\boldsymbol{R}^{n}\right)$. Then, like usual theory of pseudodifferential operators, $P_{\lambda} Q_{\lambda}$ is again a pseudodifferential operator with its total symbol $\sigma\left(P_{\lambda} Q_{\lambda}\right) \in S^{m+m^{\prime} ; k+k^{\prime}}\left(\boldsymbol{R}^{n}\right)$. However, to separate the part of the highest order in $\sigma\left(P_{\lambda} Q_{\lambda}\right)$ with respect to λ we need additional assumptions on p_{i}.

Proposition 2. Suppose that $\partial_{\xi_{j}} p_{\lambda}$ belongs to $S^{m ; k^{\prime \prime}}\left(\boldsymbol{R}^{n}\right)\left(k^{\prime \prime}<k\right)$ for all $j(1 \leqq j \leqq n)$. Then we have

$$
\sigma\left(P_{\lambda} Q_{\lambda}\right)=p_{\lambda} q_{\lambda}+r_{\lambda} \quad \text { with } \quad r_{\lambda} \in S^{m+m^{\prime} ; k^{\prime}+k^{\prime \prime}}\left(\boldsymbol{R}^{n}\right) .
$$

§3. The Dirichlet problem with tangential data. Let $\left\{U_{k}\right\}$ be a finite open covering of S which consists of local coordinates neighbourhoods of S; we denote by $F_{k, 0}$ the diffeomorphism from the closed unit ball $B=\left\{\left(z^{\prime}, 0\right) \in \boldsymbol{R}^{n-1} \times \boldsymbol{R}:\left|z^{\prime}\right|^{2} \leqq 1\right\}$ onto \bar{U}_{x}. Let $\left\{\chi_{x}\right\}$ be a partition of unity subordinate to $\left\{U_{k}\right\}$. Let Y_{λ}^{κ} be an $n \times n$ matrix of pseudodifferential operators on \boldsymbol{R}^{n-1} satisfying to conditions:
(Y1) $\sigma\left(Y_{\lambda}^{k}\right)\left(z^{\prime}, \zeta^{\prime}\right)=y_{\lambda}^{k}\left(z^{\prime}, \zeta^{\prime}\right) \in S^{0 ; 1}\left(\boldsymbol{R}^{n-1}\right)$,
(Y2) y_{λ}^{k} vanishes outside a compact set in B.
Define the operator $F_{\kappa, 0}^{*}$ by $\left(F_{\kappa, 0}^{*} f\right)\left(z^{\prime}\right)=f\left(F_{\kappa, 0}\left(z^{\prime}\right)\right)$, for any $f \in C_{0}^{\infty}\left(U_{\kappa}\right)$.

Then we set $Y_{\lambda}^{\kappa *}=F_{\kappa, 0}^{-1 *} Y_{\lambda}^{\kappa} F_{\kappa, 0}^{*}$ and

$$
\left(Y_{\lambda} w\right)(x)=\sum_{\kappa}\left(Y_{\lambda}^{k *} \chi_{k} w\right)(x), \quad w \in\left(\mathscr{D}^{\prime}(S)\right)^{n}
$$

We say that a bounded linear transformation P_{λ} in $W_{r}^{s}(S)$ (for all $s \in \boldsymbol{R}$) belongs to class $S(k)$ if the estimate
$\left|P_{\lambda} w\right|_{W_{r}^{s}(S)} \leqq K_{s, c, \omega}|\lambda|^{(k-d) / 2}|w|_{W_{r}^{s+\alpha}(S)}, w \in W_{r}^{s+d}(S), \lambda \in \Sigma_{s, \omega}, k \leqq d \leqq 0$
is valid for some constant $K_{s, c, \omega}$. Roughly speaking, the class $S(k)$ contains the space of pseudodifferential operators whose total symbols belong to $S^{0 ; k}$; recall L_{r} boundedness theorem of pseudodifferential operators (cf. Kumano-go and Nagase [8]).

To construct $V_{\lambda} g$ we compute

$$
T_{\lambda}=\gamma_{S} K_{\lambda}\left(\delta_{S} \otimes Y_{\lambda} \cdot\right)
$$

modulo $S(-1)$. Let F_{ε} be a mapping defined on $B_{\mu}=B \times[-\mu, \mu](\mu>0)$ such that $F_{\kappa}\left(z^{\prime}, z_{n}\right)=x+z_{n} \nu_{x}, x=F_{k, 0}\left(z^{\prime}\right)$. Then F_{k} is a diffeomorphism from B_{μ} onto $\bar{O}_{k}=F_{k}\left(B_{\mu}\right)$ for small μ, where O_{κ} is open in \boldsymbol{R}^{n}. Let Ψ be a pseudodifferential operator with $\sigma(\Psi)(\xi)=\psi(\xi)$, where ψ is defined in the previous example. Let $\theta_{\kappa}, \omega_{k} \in C_{0}^{\infty}\left(O_{k}\right)$ satisfy $\theta_{\kappa} \omega_{k}=\omega_{k}$ and $\omega_{k}^{*} y_{k}^{k}=y_{\lambda}^{\kappa}$ on B, where $\omega_{k}^{*}=F_{k}^{*} \omega_{\kappa}$. Then we set

$$
Z_{\lambda}^{k}=F_{k}^{*} \theta_{\kappa} K_{\lambda} F_{k}^{-1 *} \omega_{\kappa} .
$$

Let P_{λ} be a pseudodifferential operator with $\sigma\left(P_{\lambda}\right) \in S^{m ; k}\left(\boldsymbol{R}_{z}^{n}\right)$. Then we denote the single layer potential by

$$
\left(P_{\lambda, z_{n}} w\right)\left(z^{\prime}\right)=\left(P_{\lambda}\left(\delta\left(y_{n}\right) \otimes w\left(y^{\prime}\right)\right)\right)(z), \quad w \in \mathcal{S}^{\prime}\left(\boldsymbol{R}^{n-1}\right)
$$

Set $T_{\lambda}^{\kappa}=Z_{\lambda, 0}^{\kappa} Y_{\lambda}^{\kappa}$. Then we can localize the operator T_{λ}.
Proposition 3. $T_{\lambda}-\sum_{\kappa} F_{\kappa, 0}^{-1 *} T_{\lambda}^{\kappa} F_{\kappa, 0}^{*} \chi_{k} \in S(-1)$.
Next we study $\sigma\left(T_{\lambda}^{k}\right)$.
Proposition 4. Set

$$
x_{\lambda}^{k}\left(z^{\prime}, \zeta^{\prime}\right)=\left.\frac{\omega_{k}^{*}\left(z^{\prime}, 0\right)}{2 \pi} \int_{-\infty}^{\infty}\left(\psi k_{\lambda}\right)\left({ }^{t} d_{z} F_{k}^{-1} \zeta\right)\right|_{z_{n}=0} d \zeta_{n}
$$

where $d_{z} F_{s}$ denotes the Jacobi matrix of F_{s} at z. Then we have

$$
\sigma\left(Z_{\lambda, 0}^{k}\right)\left(z^{\prime}, \zeta^{\prime}\right)-x_{\lambda}^{k}\left(z^{\prime}, \zeta^{\prime}\right) \in \dot{S}^{0 ;-2}\left(\boldsymbol{R}^{n-1}\right)
$$

Moreover, we have $\partial_{\xi_{j}^{\prime}} x_{k}^{\lambda} \in S^{0 ;-2}\left(\boldsymbol{R}^{n-1}\right)$ for all $j(1 \leqq j \leqq n-1)$.
By (Y1) and Proposition 2 we have
Proposition 5. $\sigma\left(T_{\lambda}^{k}\right)=x_{\lambda}^{k} y_{\lambda}^{k} \bmod . S^{0 ;-1}\left(R^{n-1}\right)$.
Let π_{ν} be the projection such that $\pi_{\nu} w=\langle\nu, w\rangle \nu$. Then, using Propositions 3 and 5, we can prove

Proposition 6. We can choose y_{λ}^{*} so that

$$
T_{\lambda}=\left(I-\pi_{\nu}\right)(I+J) \quad \bmod . S(-1)
$$

where J has a smooth kernel. In particular, $\left\langle\nu, T_{\lambda} \cdot\right\rangle \in S(-1)$.
We can take sufficient fine covering $\left\{U_{k}\right\}$ so that

$$
|J w|_{L_{r}(S)} \leqq \frac{1}{2}|w|_{L_{r}(S)} \quad \text { for all } w \in L_{r}(S)
$$

Now we construct V_{λ}. We consider

$$
W_{\lambda} g=K_{\lambda}\left(\delta_{S} \otimes Y_{\lambda} g\right)-\nabla N\left\langle\nu, T_{\lambda} g\right\rangle,
$$

which satisfies (T) except the boundary condition $\gamma_{s} v=g$. Set $S_{k} g$ $=\gamma_{s} W_{\lambda} g$. Then it is clear that $\left\langle S_{\lambda} g, \nu\right\rangle=0$. Take y_{λ}^{k} as in Proposition
6. Then we have

Theorem 4. The bounded linear operator

$$
S_{\lambda}: W_{r, \tau}^{s}(S) \longrightarrow W_{r, \tau}^{s}(S)
$$

has the form

$$
S_{\lambda}=I+\left(I-\pi_{\nu}\right) J \quad \bmod . S(-1)
$$

This implies S_{λ} has the inverse if $|\lambda|$ is large, so we have
Proposition 7. $\quad V_{\lambda} g=W_{\lambda} S_{\lambda}^{-1} g$ if $|\lambda|$ is large.
By Propositions 1 and 7 we get
Theorem 5. $\quad G_{\lambda} f=K_{\lambda} f-\nabla N\left\langle\nu, \gamma_{S} K_{\lambda} f\right\rangle-W_{\lambda} S_{\lambda}^{-1} M_{\lambda} f$ if $|\lambda|$ is large.
From this Theorem we can derive Theorems 1 and 2 (cf. Seeley [12]) ; we shall give the detailed proof elsewhere.

References

[1] E. B. Fabes, J. E. Lewis, and N. M. Riviere: Boundary value problems for the Navier-Stokes equations. Amer. J. Math., 99, 628-668 (1977).
[2] H. Fujita and T. Kato: On the Navier-Stokes initial value problem I. Arch Rational Mech. Anal., 16, 269-315 (1964).
[3] H. Fujita and H. Morimoto: On fractional powers of the Stokes operator. Proc. Japan Acad., 46, 1141-1143 (1970).
[4] D. Fujiwara: On the asymptotic behaviour of the Green operators for elliptic boundary problems and the pure imaginary powers of some second order operators. J. Math. Soc. Japan, 21, 481-521 (1969).
[5] D. Fujiwara and H. Morimoto: An L_{r}-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo, 24, 685-700 (1977).
[6] T. Kato: Fractional powers of dissipative operators. II. J. Math. Soc. Japan, 14, 242-248 (1962).
[7] T. Kato and H. Fujita: On the nonstationary Navier-Stokes system. Rend. Sem. Mat. Univ. Padova, 32, 243-260 (1962).
[8] H. Kumano-go and M. Nagase: L^{p}-theory of pseudo-differential operators. Proc. Japan Acad., 46, 138-142 (1970).
[9] O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow. Moscow (1961).
[10] T. Miyakawa: On the initial value problem for the Navier-Stokes equations in L^{p} spaces (preprint).
[11] F. K. G. Odqvist: Über die Randwertaufgaben der Hydrodynamik zäher Flüssigkeiten. Math. Z., 32, 329-375 (1930).
[12] R. Seeley: Norms and domains of the complex powers. A_{B}^{z}. Amer. J. Math., 93, 299-309 (1971).
[13] P. E. Sobolevskii: Study of Navier-Stokes equations by the methods of the theory of parabolic equations in Banach spaces. Soviet Math. Dokl., 5, 720-723 (1964).
[14] V. A. Solonnikov: Estimates for solutions of nonstationary Navier-Stokes equations. J. Sov. Math., 8, 467-529 (1977).

