18. On some Schrödinger Type Equations

By Sigeru Mizohata
Department of Mathematics, Kyoto University
(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1981)

1. Introduction. We are concerned with the following evolution equation defined for $(x, t) \in R^{n} \times R^{1}$:

$$
\begin{equation*}
L(u)=i \partial_{t} u+\sum_{j, k} \partial_{j}\left(a_{j k}(x) \partial_{k} u\right)+\sum_{j} b_{j}(x) \partial_{j} u+c(x) u=f(x, t), \tag{1.1}
\end{equation*}
$$

with initial data $u_{0}(x) \in L^{2}\left(R^{n}\right)$ at $t=0$, where $\partial_{j}=\partial / \partial x_{j}$ and $a_{j k}(x)$ are real-valued and bounded with all their derivatives with $a_{j k}(x)=a_{k j}(x)$. Moreover we assume the uniform ellipticity : $\sum a_{j k}(x) \xi_{j} \xi_{k} \geqslant \delta|\xi|^{2}(\delta>0)$.

Recently J. Takeuchi treated this type problem for more general equations ([3]). He proposes a (sufficient) condition for the equation (1.1) to be L^{2}-wellposed. This terminology means the following : For any initial data $u_{0}(x) \in L^{2}\left(R^{n}\right)$, and any continuous function $t \mapsto f(\cdot, t)$ in L^{2}, the equation (1.1) has a unique solution $u(\cdot, t)$, continuous in L^{2}, so that by Banach's closed graph theorem there exists a constant C such that for any $t \in[-1,1]$, it holds

$$
\begin{equation*}
\|u(t)\| \leqslant C\left(\|u(0)\|+\left|\int_{0}^{t}\|f(s)\| d s\right|\right) \tag{1.2}
\end{equation*}
$$

The purpose of this note is to investigate the neccessary condition for this problem. Let

$$
a(x, \xi)=\sum a_{j k}(x) \xi_{j} \xi_{k} .
$$

We consider the integral curves, called bicharacteristic strips, of the corresponding Hamilton-Jacobi equation

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=a_{\xi}(x, \xi) \tag{1.3}\\
\frac{d \xi}{d t}=-a_{x}(x, \xi) .
\end{array}\right.
$$

Denote its integral curve issuing from (x_{0}, ξ^{0}) at $t=0$ by ($x\left(x_{0}, t, \xi^{0}\right)$, $\xi\left(x_{0}, t, \xi^{0}\right)$). Then the condition that we propose is :
(B) $\operatorname{Re} \int_{0}^{t} \sum_{j} b_{j}\left(x\left(x_{0}, s, \xi^{0}\right)\right) \xi_{j}\left(x_{0}, s, \xi^{0}\right) d s$ remain bounded for all $\left(x_{0}, \xi^{0}\right) \in R^{n} \times R^{n} \backslash\{0\}$ and $t \in R^{1}$.

We assume here the following:
(A) For any $\left(\xi^{0}, t\right) \in R^{n} \backslash\{0\} \times R^{1}$ fixed, the mapping $x_{0} \mapsto x\left(x_{0}, t, \xi^{0}\right)$ is a diffeomorphism from R^{n} onto R^{n}.
Let us note that, under this assumption, there exists the global phase function $S\left(x, t, \xi^{0}\right)$, which is defined as the solution of HamiltonJocobi's equation

$$
\begin{equation*}
S_{t}+a\left(x, S_{x}\right)=0 \tag{1.4}
\end{equation*}
$$

with $S\left(x, 0, \xi^{0}\right)=x \xi^{0}$. Then we have
Theorem. Under the assumption (A), the condition (B) is necessary for the L^{2}-wellposedness of (1.1).

Remark. We assume $b_{j}(x) \in C^{1}$ and $c(x)$ is locally bounded. If we are concerned only with forward Cauchy problem, the condition (B) should be replaced by
$(\mathrm{B})_{+} \operatorname{Re} \int_{0}^{t} b\left(x\left(x_{0}, s, \xi^{0}\right)\right) \xi\left(x_{0}, s, \xi^{0}\right) d s$ remain bounded from below for all $\left(x_{0}, \xi^{0}\right) \in R^{n} \times R^{n} \backslash\{0\}$ and $t \geqslant 0$.

For the proof, we use asymptotic solutions which are fairly familiar (see [1], [2]). In other words, we look at wave packets moving along classical trajectories corresponding to Hamiltonian $\alpha(x, \xi)$.
2. Approximate solutions. We show the necessity of (B).. Let us suppose (B) $)_{+}$is violated. Then there exist $x_{0}^{0}\left(=\left(x_{0,1}, \cdots, x_{0, n}\right)\right)$ and $\xi^{0} \in R^{n} \backslash\{0\}$ and $t_{1}>0$, such that

$$
\begin{equation*}
\operatorname{Re} \int_{0}^{t_{1}} b\left(x\left(x_{0}^{0}, s, \xi^{0}\right)\right) \xi\left(x_{0}^{0}, s, \xi^{0}\right) d s \leqslant-\log (2 C) \tag{2.1}
\end{equation*}
$$

where C is the constant in (1.2). We seek an approximate solution of the form

$$
\begin{aligned}
& u(x, t)=e^{i S\left(x, t, \xi^{0}\right)} v\left(x, t ; \xi^{0}\right) \\
& e^{-i s}\left[i \partial_{t}+\sum \partial_{j} a_{j_{k}}(x) \partial_{k}+\sum b_{j}(x) \partial_{j}\right]\left(e^{i S} v\right) \\
& =\left[-S_{t}+i \partial_{t}+\sum\left(\partial_{j}+i S_{x_{j}}\right) a_{j k}(x)\left(\partial_{k}+i S_{x_{k}}\right)+\sum b_{j}\left(i S_{x_{j}}+\partial_{j}\right)\right] v\left(x, t, \xi^{0}\right) .
\end{aligned}
$$

Taking account of (1.4), [...] becomes

$$
\begin{aligned}
i\left[\partial_{t}\right. & \left.+2 \sum_{j, k} a_{j k}(x) S_{x j} \partial_{k}+\sum \partial_{j}\left(\sum_{k} a_{j k}(x) S_{x_{k}}\right)+\sum b_{j}(x) S_{x j}\right] v \\
& +\sum_{j, k} \partial_{j}\left(a_{j k}(x) \partial_{k} v\right)+\sum b_{j}(x) \partial_{j} v .
\end{aligned}
$$

We define v as a solution of the transport equation
(E) $\left\{\partial_{t}+\sum_{j} a_{\xi_{j}}\left(x, S_{x}\right) \partial_{j}\right\} v+\left\{\sum_{j} \partial_{j}\left(\sum_{k} a_{j k}(x) S_{x_{k}}\right)+\sum_{j} b_{j}(x) S_{x_{j}}\right\} v=0$.

Let $\varphi\left(x_{0}\right)$ be a smooth function with small compact support around $x_{0}=x_{0}^{0}$. Let the inverse mapping of $x_{0} \mapsto x\left(x_{0}, t, \xi^{0}\right)$ be $x_{0}\left(x, t, \xi^{0}\right)$ then the integration of the relation (E) along the bicharacteristic curve Γ through the point (x, t) gives

$$
\begin{aligned}
v\left(x, t ; \xi^{0}\right)= & \exp \left[-\sum_{j} \int_{0}^{t} b_{j}\left(x\left(x_{0}, s, \xi^{0}\right)\right) \xi_{j}\left(x_{0}, s, \xi^{0}\right) d s\right] \\
& \times \exp \left[-\int_{0}^{t} \sum_{j} \partial_{j}\left(\left.\sum_{k} a_{j k}(x) S_{x_{k}}\right|_{\Gamma} d s\right] \varphi\left(x_{0}\left(x, t, \xi^{0}\right)\right)\right.
\end{aligned}
$$

Now it is easy to see that the second factor of the right-hand side is equal to $\left|d x / d x_{0}\right|_{t=t}^{-1 / 2}$ where $d x / d x_{0}$ is Jacobian. Hence the above expression is

$$
\begin{equation*}
v\left(x, t ; \xi^{0}\right)=\exp \left[-\left.\int_{0}^{t} \sum_{j} b_{j}(x) \xi_{j}\right|_{\Gamma} d s\right]\left|\frac{d x}{d x_{0}}\right|_{t=t}^{-1 / 2} \varphi\left(x_{0}\left(x, t, \xi^{0}\right)\right) . \tag{2.2}
\end{equation*}
$$

3. Proof of Theorem. Up to now we fixed ξ^{0}. Now we replace
ξ^{0} by $\lambda \xi^{0}, \lambda$ being positive parameter tending to ∞. Denote the corresponding solution by $v_{\lambda}(x, t)$. To see clearly the dependence of $v_{\lambda}(x, t)$ on λ, first we observe

$$
\left\{\begin{array}{l}
x\left(x_{0}, t, \lambda \xi^{0}\right)=x\left(x_{0}, \lambda t, \xi^{0}\right) \tag{3.1}\\
\xi\left(x_{0}, t, \lambda \xi^{0}\right)=\lambda \xi\left(x_{0}, \lambda t, \xi^{0}\right) .
\end{array}\right.
$$

In fact, the function $t \mapsto\left(x\left(x_{0}, \lambda t, \xi^{0}\right), \lambda \xi\left(x_{0}, \lambda t, \xi^{0}\right)\right)$ satisfies HamiltonJacobi's equation (1.3) with initial data ($x_{0}, \lambda \xi^{0}$) at $t=0$. Then by uniqueness, (3.1) follows. This shows in particular the projection on the x-space of the bicharacteristic strip is unchanged. Next, since in the expression of (2.2) (in view of (3.1)), we have

$$
\int_{0}^{t} b\left(x\left(x_{0}, s, \lambda \xi^{0}\right)\right) \xi\left(x_{0}, s, \lambda \xi^{0}\right) d s=\int_{0}^{\lambda t} b\left(x\left(x_{0}, s, \xi^{0}\right)\right) \xi\left(x_{0}, s, \xi^{0}\right) d s
$$

Put

$$
w\left(x, t, \xi^{0}\right)=\left|\frac{d x}{d x_{0}}\right|^{-1 / 2} \varphi\left(x_{0}\left(x, t, \xi^{0}\right)\right)
$$

Recalling the relation $x_{0}\left(x, t, \lambda \xi^{0}\right)=x_{0}\left(x, \lambda t, \xi^{0}\right)$, we see easily that $w\left(x, t, \lambda \xi^{0}\right)=w\left(x, \lambda t, \xi^{0}\right)$. Thus,

$$
(3.2) \quad v_{\lambda}(x, t) \equiv v\left(x, t ; \lambda \xi^{0}\right)=v\left(x, \lambda t ; \xi^{0}\right)
$$

Another important property is that the mapping $\varphi(x) \mapsto w\left(\cdot, t, \xi^{0}\right)$ is unitary, namely L^{2}-norm is preserved. Now v_{λ} satisfies

$$
\begin{equation*}
L\left(e^{i S_{\lambda}} v_{2}\right)=f_{2}(x, t) \tag{3.3}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
S_{\lambda}(x, t)=S\left(x, t, \lambda \xi^{0}\right) \\
f_{\lambda}(x, t)=i e^{i S_{\lambda}}\left[\sum_{j, k} \partial_{j} \cdot a_{j k}(x) \partial_{k}+\sum_{j} b_{j}(x) \partial_{j}+i c(x)\right] v_{\lambda}(x, t) .
\end{array}\right.
$$

An important property of $f_{\lambda}(x, t)$ is that, in view of its form, we have $\left|f_{\lambda}(x, t)\right|=\left|f_{1}(x, \lambda t)\right|, f_{1}$ being defined by (3.4) replacing there v_{λ} by $v\left(x, t, \xi^{0}\right)$. Thus

$$
\begin{equation*}
\int_{0}^{t}\left\|f_{\lambda}(\cdot, s)\right\| d s=\int_{0}^{t}\left\|f_{1}(\cdot, \lambda s)\right\| d s=\frac{1}{\lambda} \int_{0}^{\lambda t}\left\|f_{1}(\cdot, s)\right\| d s \tag{3.5}
\end{equation*}
$$

Now we apply (1.2) to the relation (3.3). Since S_{λ} is real, we have

$$
\begin{equation*}
\left\|v_{\lambda}(\cdot, t)\right\| \leqslant C\left(\|\varphi\|+\int_{0}^{t}\left\|f_{\lambda}(\cdot, s)\right\| d s\right) . \tag{3.6}
\end{equation*}
$$

First we put here $t=t_{1} / \lambda$. Then by (3.5), the integral term is $\frac{1}{\lambda} \int_{0}^{t_{1}}\left\|f_{1}(\cdot, s)\right\| d s$. Next, remark that the support of $w\left(x, t_{1}, \xi^{0}\right)$ is concentrated around $x^{(1)}=x\left(x_{0}^{0}, t_{1}, \xi^{0}\right)$, moreover its diameter can be made as small as we desire by shrinking the support of φ to x_{0}^{0}. Thus by (2.1) we can assume, in the expression (2.2) replaced t by t_{1}, exponential term is greater than $3 C / 2$ in absolute value. Thus, for $t=t_{1} / \lambda$, we have

$$
\left\|v_{\lambda}(\cdot, t)\right\| \geqslant \frac{3 C}{2}\|\varphi\| .
$$

Thus (3.6) implies the following inequality

$$
\frac{3 C}{2}\|\varphi\| \leqslant C\left(\|\varphi\|+\frac{1}{\lambda} \int_{0}^{t_{1}}\left\|f_{1}(\cdot, s)\right\| d s\right)
$$

which is impossible when $\lambda \rightarrow \infty$. Thus we proved Theorem.
The author wishes to thank Prof. D. Fujiwara for a precious advice concerning the assumption (A).

References

[1] G. D. Birkhoff: Quantum mechanics and asymptotic series. Bull. Amer. Math. Soc., 39, 681-700 (1939).
[2] V. P. Maslov: Theory of Perturbations and Asymptotic Methods. Moscow (1965).
[3] J. Takeuchi: On the Cauchy problem for some non-kowalewskian equations with distinct characteristic roots. J. Math. Kyoto Univ., 20, 105-124 (1980) .

