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Introduction. This is a continuation of our papers [2], [3] which
will be referred to as (I), (II), respectively, in this paper.” Let K be
a field of characteristic not 2 and X be a composition algebra over K.
By definition, X is an algebra (not necessarily associative) with 1 over
K together with a nonsingular quadratic form ¢, such that ¢.(zxy)
=qy(@)ax(y), £, ye X. Thanks to a theorem due to Hurwitz (cf. [1],
Theorem 3.25, p. 73), such algebras are completely determined.
Namely, an algebra (X, q;) is one of the following: (I) X=K; (II) X
=K®K ; (III) X=a quadratic extension of K; (IV) X=a quaternion
algebra over K; (V) X=a Cayley algebra over K. Furthermore, if
X =K, then q,(x)=x?; otherwise ¢, is the norm form on X. There-
fore, we shall put n(x) =q.(x).

From now on, assume that K=F,, the finite field with ¢ (odd)
elements. Then the composition algebras (X, n(x)=2zx) can be de-
scribed more precisely as follows:

(I) X=K, z=x, n(x)=2a?

(II) X=K®K, x=(x,, x) if x=(x,, 2,), and n(x)=x,%,,

(III) X =F,=the unique quadratic extension of K, Z=the conju-
gate of z, n(x)=72 2z,

(IV) X=K,=the algeba of matrices of order 2, io‘:( i* —zz)
43 1

if x=(”* ”2), and n(z)=% z=det z,
3 Ly

(V) X=K,xK, with the multiplication zw = (xu+7y, ve+yu)
for z=(xz, y), w=(,v) e X where T=the adjoint of x € K, defined
above, and z2=(%, —¥), n(@)=n(x) —n(y)=det x —det y.

The Hopf map F associated to a composition algebra (X, n) is the
map

0.1) F:Z=XxX—->W=K XX defined by

F(2)=(n(z) —n(y), 2xy).
Our purpose is to determine the invariants ¢, pr introduced in the
paper (I) for the map F with respect to the quadratic character y of K.

1) For example, we mean by (I1.3.4) the item (3.4) in (II).
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§ 1. Statement of the results. Let K=F, (¢: odd) and let F' be
a quadratic mapping X—Y of vector spaces over K, n=dim X, m=dim
Y. For each 2€ Y* (the dual of Y) put F,=10F, a quadratic form on
X. Denote by 7, the rank of F',. Put

(1.1) Sm=x§( A(F (),

where y means the quadratic character of the multiplicative group K*
(extended by x(0)=0). It is known that (cf. (11.1.3), (11.1.4))
0, if r,is even
1.2) S ={ , i ’
-2 Sr, g nm (g —Dy((—1)7302dy),  if 7, is odd,
where d,=det F';, From (1.2) it follows that

def

(1.3) Op ZJGZY:,, [SFAIZ_—_(q___l)Z Zd:d an-T}-l.
By (1.1.11), (1.3), we have

def

1.4) pr= w%jep AF(@): F)P=q*™(q—1) > ¢ "~

r;odd

(1.5) Theorem. Let X be a composition algebra over the field
K=F,(q: 0dd), and F:XxX—->KXX be the associated Hopf map.
Then, we have S;,=0 for all 2€ (KX X)* (and hence g,=p,=0) except
for the case (I) X=K, q=1(mod4), and in the latter case o,=2q¢*(q—1)?,
er=2q(q—1)"

Our proof of the theorem splits into five parts according to the
clagsification.

§2. Type (). In this case, we have X=K, n(z)=2*, Z=X'=K",
W=KxX=K?and F(z)=(2*—v* 2xy). Hence, F,(2)=1,(*— ¥ + 2,2xy)
= ,2*+ 20,2y — 2,y and the corresponding matrix is

(A

2.1) 0= (22 _21).

When 10, we have r,=rank @,=1 or 2 according as 4;+4:=0 or ==0.
Therefore r,=2 always when ¢=3 (mod 4). On the other hand, when
q=1 (mod 4), since the number of 1= (4, 2,) #0 with 2} + =0 is 2(¢—1),
there are 2(¢—1) 2’s for which »,=1. For each such 2 we have, by
1.2), |Ss,|=q(g—1) and so 0,=2¢*(q—1)*, pr=29(¢—1)* by (1.3), (1.4).

§3. Type (II). In this case, we have X=K®K, n(x)=wx,x, for
=@, )X, Z=XxX, W=K x X and F(2)=n(x)—n(y), 2xy) where
xy= (2, 2,¥,). Hence, if we put 4,=yec K, V=(a, p) € X*, we have
F(2) = 2,(n(x) —n(y)) + 27’ (xy) =1 (2,2, — ¥, ¥,) + 20,Y; + 2p2.Y, and the cor-
responding matrix is

g A

B.1D) 9,= 1y
2

2) As for the meaning of unexplained notations, see (I. §1).
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with
3.2) J= (0 1), A=(“ 0).
10 0 8
Observe that r,=4 —dim(Ker @,). Therefore, if y=0, then dim(Ker @)

=2 dim(Ker 4)=0 (mod 2), hence 7,=0 (mod 2). On the other hand,
if y+0, since we have

-;—Jx+Ay=O,

(3.3) q)x< ”):0 —
Y %Jy—Ax=0,

on eliminating ¥, we have

3.4 G J+4AJA)x=0.

Since a simple computation shows that

3.5) AJA=apl,

(8.4) is equivalent to the trivial equation

3.6) (*+4epu=0,
which implies that »,=rank @,=4—dim(Ker @,)=4—(0 or 2)=0 (mod
2), again.

§4. Type (II). In this case, we have X=F,=K(0), ’=me K,
n@)=a2—mal if r=x,4+60x, Z=XxX, W=KxX and F(z)=n(x)
—n(y), 2xy) where zy=(x,y, + may,) + (@Y, + 2.y)0. Hence, if we
put L,=reK, V=(a, B)eX*, we have F (2)=2(n(x)—n(y))+22(xy)
= (2} — mai— Y3 + myd) + 2a(w,y, + ma,y,) + 2p(x,y, + 2,¥,) and the corre-
sponding matrix is

@1 q)a-_-(TJ A)

A —yJ
with
wn o= (s D)

Observe that r,=4 —dim(Ker @,). Therefore, if y=0, then dim(Ker 9,)
=2 dim(Ker A) and so 7,=0 (mod 2). On the other hand, if 70,
since we have

w o)) o

we have
4.4 GJ+AJ'A)x=0.
Since a simple computation shows that

4.5) AJ"‘A=(a2—%)J,

(4.4) is equivalent to the trivial equation

(4.6) (72+(a2——%))u=0,
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which implies that »;=rank @,=4 —dim(Ker @,)=4—(0 or 2)=0 (mod
2), again.

§5. Type (IV). In this case, we have X=K,, n(x)=det 2, Z=X
XX, W=KxX and F(z)=n(x)—n(y), 2xy) where zy is the matrix
multiplication. Hence, if we put 4=y ¢ K, ¥=a= (“1 “2) e X* with

Xy O
ar= Zatxu we have F(2)=2,(m(x)—n(y))+ 22 (@y) =70, — 2.2, — Y1 Y4

+ yzya) + 200, (1Y, + T2Ys) + 20 (1Y + T2Y) + 2005 (XY + 2,Y5) + 20, (05Y, + X,Y)
and the corresponding matrix is

ry A
2
6.1 0,=
t, —LJ
2
with
1 o, a 0 0
-1 A 0 0 o a
6.2 J= -1 ’ Ve « 0 0
1 0 0 a a

Observe that r,=8—dim(Ker @,). Therefore, if y=0, then dim(Ker @,
=dim(Ker A)+dim(Ker ‘A)=2 dim(Ker A) and so 7,=0 (mod 2). On
the other hand, if y3=0, since we have

%Jw—i—Ay:O,

.3) <za< “):0 =
Y lé—Jy—‘Ax=0,

we have

(5.4) GJ+4AJ'A)x=0.

Since a simple computation shows that

(5.5) AJtA=(deta)],

(5.4) is equivalent to the trivial equation

(5.6) (G*+4detmyu=0,
which implies that »,=rank @,=8—dim((Ker @,)=8—(0 or 4)=0 (mod
2), again.

§6. Type (V). In this case, we have X=K,xK,, n(z)=detx
—detyifz=(z, ) =X,Z=XXX, W=K x X and F(z, w)=n(z) —n(w),
2zw) where 2= (2, ¥), w=W, v) e Z=X X X and zw = (xu-+7y, v2+yu).
Hence, if we put 2,=7 e K, 7=(a, p) € X* with a= (“‘ az), B= (‘6‘ 132)

Xy Ky ,Bs .84
we have F',(z, w) =2,(n(2) —n(w)) + 22’ (zw) =y(det xt —det y —det u+det v)

+2a(xu+7y)+2p(ve+yu)® and the corresponding matrix is

3) We here omit the expression in terms of coordinates because it is too
long.
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[T A
2
6.1) 0,=
—1J
with
1
-1
-1
1
J= ,
-1
1
1
—1
(6.2)
(¢, a 0 OB O B 0 )
0 0 oy Oy ﬁz 0 ‘84 0
o 0 0,0 5 0 B
Ao 0 0 a, o, | 0 g 0 B
0 ’_‘Bg 0 ‘Bl 0 0 —03 O
182 0 —131 0 0 0 —a, o
0 -3 0 Bla—a 0 O
N ‘B4 0 —ﬁa 0 oy —0y 0 0 )

Observe that 7,=16—dim(Ker @,). Therefore, if y=0, then dim(Ker 9,)
=dim(Ker 4)+dim(Ker *!A)=2 dim(Ker A) and so 7,=0 (mod 2). On
the other hand, if y=0, since we have

%Jx—i—Ay_—-O,

6.3) cb;(”)=0 PN
] —;—Jy——‘szO,

we have
(6.4 (G J+4AJ'A)x=0.
Since a simple (but lengthy) computation shows that
(6.5) AJ'A=(det «—det p)J,
(6.4) is equivalent to the trivial equation
(6.6) (*+4(det a—det p))u=0,
which implies that r,=rank @,=16 —dim(Ker @,)=16 — (0 or 8)=0 (mod
2), again. Q.E.D.
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