117. An Estimate of the Roots of b.Functions by Newton Polyhedra

By Mitsuo Kato
Department of Mathematics, College of Science, University of the Ryukyus
(Communicated by Kunihiko Kodaira, m. J. A., Dec. 12, 1981)

Introduction. In this note we give an estimate of the roots of b-functions of certain isolated singularities (Theorem 4.4).

The theory of b-functions and the proof given here are based on Yano [5]. In the real analytic case, the same estimate is given in Varchenko [4].

The author is grateful to Dr. Tamaki Yano for many valuable advices.
§ 1. Let \mathcal{O} be the set of germs of holomorphic functions at the origin O of $C^{n+1}, \mathscr{D}=\mathcal{O}\left[\partial / \partial x_{0}, \cdots, \partial / \partial x_{n}\right], B_{p t}=D \delta$ where δ is the δ function.

For any $f \in \mathcal{O}$, there exist $P(s) \in \mathscr{D}[s], b(s) \in C[s]$ such that $P(s) f^{s+1}$ $=b(s) f^{s}$ (Bernstein [1], Björk [2]). These $b(s)$ form an ideal and the generator of the ideal is called the b-function of f and denoted by $b_{f}(s)$. If $f(0)=0, b_{f}(s)$ is divided by $s+1$ and we put $\tilde{b}_{f}(s)=b_{f}(s) /(s+1) . \quad \mathscr{g}_{f}(s)$ $=\left\{P(s) \in \mathscr{D}[s]: P(s) f^{s}=0\right\}$.

Let $\Gamma_{+}(f)$ be the Newton polyhedron of f and $\left\{\gamma_{1}, \cdots, \gamma_{m}\right\}$ the set of all the n-dimensional faces of $\Gamma_{+}(f)$ not contained in $\left\{x: \prod_{i=0}^{n} x_{i}=0\right\}$, $\gamma_{k}=\left\{\left(x_{0}, \cdots, x_{n}\right): \sum d_{k, i} x_{i}=1\right\}$. Then $d_{k}\left(x_{i}\right)=d_{k, i}$ defines a degree on \mathcal{O}, and we put $X_{k}=\sum d_{k, i} x_{i} \partial / \partial x_{i}$.
§2. From now on we assume that $f \in \mathcal{O}(f(0)=0)$ has an isolated singularity and is nondegenerate with respect to $\Gamma_{+}(f)$.
2.1. Theorem (Kashiwara-Yano). α is a root of $\tilde{b}_{f}(s)$ if and only if there exists a nonzero element Δ of $B_{p t}$ satisfying the following two conditions:

$$
\begin{equation*}
f(x) \Delta=0 \quad \text { and } \quad \partial f / \partial x_{i} \Delta=0, \quad i=0, \cdots, n, \tag{2.1.1}
\end{equation*}
$$ for any $P(s) \in \mathcal{G}_{f}(s), \quad P(\alpha) \Delta=0$.

2.2. Theorem (Teissier [3]). For any ideal I of \mathcal{O}, there exists $\nu_{0} \in N$ such that, for any $\nu \in N, \overline{I^{\nu+\nu_{0}}}=I^{\nu} \cdot \overline{I^{\nu 0}}$, where \bar{I} denotes the integral closure of I.
2.3. Proposition. Let $I=\left(x_{0} \partial f / \partial x_{0}, \cdots, x_{n} \partial f / \partial x_{n}\right) \mathcal{O}$. For any $\nu \in N$ and $g \in \mathcal{O}, g \in \overline{I^{\nu}}$ if and only if $d_{k}(g) \geqq \nu, k=1, \cdots, m$.
§3. Construction of an operator $P(s) \in \mathcal{F}_{f}(s)$. An element of $\mathscr{D}[s] f^{s}$ is uniquely expressed as a finite sum $\sum_{i} a_{i}(x) f[i], a_{i} \in \mathcal{O}, f[i]$
$=s(s-1) \cdots(s-i+1) f^{s-i}, f[0]=f^{s}$.
3.1. Definition. $\quad d_{k}\left(\sum a_{i}(x) f[i]\right)=\inf \left\{d_{k}\left(a_{i}\right)-i\right\}, k=1, \cdots, m$.
3.2. Proposition. If $d_{k}\left(\sum a_{i} f[i]\right)=d<\infty$, then we have the inequality $d_{k}\left(\left(s+d-X_{k}\right)\left(\sum a_{i} f[i]\right)\right)>d$.

Proof. By 3.1, $d_{k}\left(a_{i}\right) \geqq d+i$, and we let a_{i}^{*} be the d_{k}-homogeneous part of a_{i} of degree $d+i$.
(3.2.1) $\quad\left(s-X_{k}\right)\left(\sum a_{i} f[i]\right)=\sum\left\{a_{i}\left(f-X_{k} f\right) f[i+1]+\left(i-X_{k}\right) a_{i} f[i]\right\}$.

Since $d_{k}\left(f-X_{k} f\right)>1$, the d_{k}-homogeneous part of (3.2.1) of degree d is $\sum\left(i-X_{k}\right) a_{i}^{*} f[i]=-d \sum a_{i}^{*} f[i]$. Thus the d_{k}-homogeneous part of $\left(s+d-X_{k}\right)\left(\sum a_{i} f[i]\right)$ of degree d is zero.
3.3. Let $I=\left(x_{0} \partial f / \partial x_{0}, \cdots, x_{n} \partial f / \partial x_{n}\right) \mathcal{O}$ and let $\nu_{0} \in N$ have the property of Theorem 2.2.

We put $P_{0}(s)=1$, and for $k \geqq 1$, we define $P_{k}(s)$ inductively :

$$
\begin{equation*}
P_{k}(s)=\left(s+d_{k^{\prime}}\left(P_{k-1} f^{s}\right)-X_{k^{\prime}}\right) P_{k-1}, \tag{3.3.1}
\end{equation*}
$$

where k^{\prime} is such an integer that $1 \leqq k^{\prime} \leqq m$ and $k^{\prime} \equiv k \bmod m$.
Choose $N \in N$ so that

$$
\begin{equation*}
d_{k}\left(P_{N} f^{s}\right) \geqq \nu_{0}, \quad k=1, \cdots, m . \tag{3.3.2}
\end{equation*}
$$

Let
(3.3.3)

$$
P_{N} f^{s}=\sum_{i=1}^{N} a_{i} f[i] .
$$

Then (3.3.2) implies

$$
\begin{equation*}
d_{k}\left(a_{i}\right) \geqq \nu_{0}+i, \quad i=1, \cdots, N, \quad k=1, \cdots, m \tag{3.3.4}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
a_{i} \in I^{i} \cdot \overline{I^{\nu 0}}, \quad i=1, \cdots, N . \tag{3.3.4}
\end{equation*}
$$

Let

$$
\begin{equation*}
a_{N}=\sum_{|J|=N} u_{J}(x)\left(x_{i} \partial f / \partial x_{i}\right)^{J}, \quad u_{J} \in \overline{I^{\nu 0}} . \tag{3.3.5}
\end{equation*}
$$

Put

$$
\begin{equation*}
P_{N}^{\prime}=P_{N}-\sum_{|J|=N} u_{J}(x)\left(x_{i} \partial / \partial x_{i}\right)^{J} . \tag{3.3.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
P_{N}^{\prime} f^{s}=\sum_{i=1}^{N-1} a_{i}^{\prime}(x) f[i], \quad a_{i}^{\prime} \in I^{i} \cdot \overline{I^{\nu 0}} . \tag{3.3.7}
\end{equation*}
$$

Continuing the same reduction N times, we get an operator $P(s)$ $\in \mathcal{G}_{f}(s)$ of the form:

$$
\begin{equation*}
P(s)=P_{N}(s)-\sum_{|J| \leqq N} u_{J}(x)\left(x_{i} \partial / \partial x_{i}\right)^{J}, \quad u_{J} \in \overline{I^{\nu 0}} . \tag{3.3.8}
\end{equation*}
$$

§4. An estimation of roots of $\tilde{b}_{f}(s)$. 4.1. Lemma. Let $P \in \mathscr{D}$, $\Delta \in B_{p t}, P \Delta=0$, and let d be a degree on $\mathscr{D}, B_{p t}(d(\delta)=0)$. Let P^{*}, Δ^{*} be, respectively, the homogeneous parts of P, Δ of the lowest degrees. Then we have $P^{*} \Delta^{*}=0$.
4.2. Lemma. Assume that $\Delta \in B_{p t}$ is homogeneous with respect to d_{k}, then $X_{k} \Delta=\left(d_{k}(\Delta)-\sum_{i} d_{k}\left(x_{i}\right)\right) \Delta$.
4.3. Let α be a root of $\tilde{b}_{f}(s)$ and let $P(s) \in \mathcal{G}_{f}(s)$ be that of (3.3.8). By Theorem 2.1, there exists $\Delta \in B_{p t}$ with the properties (2.1.1), (2.1.2). In particular $P(\alpha) \Delta=0$.

Recall that P_{N} is the homogeneous part of P of degree 0 with respect to all d_{k} and $d_{k}\left(P-P_{N}\right) \geqq \nu_{0}$.

Let Δ_{k} be the d_{k}-homogeneous part of Δ_{k-1} of the lowest degree, $\Delta_{0}=\Delta$. Then by 4.1, $P_{N} \Delta_{k}=0$ for $k \geqq 1$.

Since Δ_{m} is homogeneous with respect to all d_{k}, we have, by 4.2, (4.3.1) $\quad P_{N}(\alpha) \Lambda_{m}=\prod_{k=1}^{N}\left(\alpha+d_{k}^{\prime}\left(P_{k-1} f^{*}\right)-d_{k}^{\prime}\left(\Delta_{m}\right)+\sum_{\imath} d_{k}^{\prime}\left(x_{i}\right)\right) \Delta_{m}$.

Hence we obtain

$$
\begin{equation*}
-\alpha \geqq \sum_{i} d_{k}\left(x_{i}\right), \quad k=1, \cdots, m . \tag{4.3.2}
\end{equation*}
$$

4.4. Theorem. Assume that $f \in \mathcal{O}$ has an isolated singularity and is nondegenerate with respect to $\Gamma_{+}(f)$. Put $t_{0}=\inf \{t:(t, \cdots, t)$ $\left.\in \Gamma_{+}(f)\right\}$. Then, for any root α of $\tilde{b}_{f}(s)$, we have $-\alpha \geqq t_{0}^{-1}$.

Proof. t_{0}^{-1} is equal to $\inf _{k}\left\{\sum_{i} d_{k}\left(x_{i}\right)\right\}$ and (4.3.2) proves the theorem.

References

[1] I. N. Bernstein: Analytic continuation of generalized functions with respect to a parameter. Funct. Anal. Appl., 6, 273-285 (1972).
[2] J. E. Björk: Rings of Differential Operators. North-Holland, Amsterdam (1979).
[3] B. Teissier: Cycles évanescents, sections planes et conditions de Whitney. Astérisque 7 et 8 (1973).
[4] A. N. Varchenko: Newton polyhedra and estimation of oscillating integrals. Funct. Anal. Appl., 10 (3), 175-196 (1976).
[5] T. Yano: On the theory of b-functions. Publ. RIMS, Kyoto Univ., 14 (1), 111-202 (1978).

