111. On Regularity Properties for some Nonlinear Parabolic Equations*)

By Hiroki Tanabe
Department of Mathematics, Osaka University
(Communicated by Kôsaku Yosida, m. J. A., Dec. 12, 1981)

The contents of this paper consist of some amelioration and supplement to the previous paper [4].

Let Ω be a not necessarily bounded domain in $R^{N}, N>2$, which is uniformly regular of class C^{2} and locally regular of class C^{4} in the sense of F. E. Browder [1]. The boundary of Ω is denoted by Γ. Let

$$
a(u, v)=\int_{\Omega}\left(\sum_{i, j=1}^{N} a_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}+\sum_{i=1}^{N} b_{i} \frac{\partial u}{\partial x_{i}} v+c u v\right) d x
$$

be a bilinear form defined in $H^{1}(\Omega) \times H^{1}(\Omega)$. The coefficients $a_{i j}, b_{i}$ are bounded and continuous in $\bar{\Omega}$ together with first derivatives and c is bounded and measurable in Ω. The matrix $\left\{a_{i j}(x)\right\}$ is uniformly positive definite in Ω. It is assumed that $c \geqq 0, c-\sum_{i=1}^{N} \partial b_{i} / \partial x_{i} \geqq 0$ a.e. in Ω.

Let $j(x, r)$ be a function defined on $\Gamma \times R$ such that for each fixed $x \in \Gamma j(x, r)$ is a proper convex lower semicontinuous function of r and $j(x, r) \geqq j(x, 0)=0$. The subdifferential of j with respect to r is denoted by β. We assume that for each $t \in R$ and $\lambda>0(1+\lambda \beta(x, \cdot))^{-1}(t)$ is a measurable function of x (cf. B. D. Calvert-C. P. Gupta [2]). For a function u defined on $\Gamma j(u)$ denotes the function $j(x, u(x)), x \in \Gamma$.

Set

$$
\Gamma_{1}=\{x \in \Gamma: \beta(x, 0)=R\}, \quad \Gamma_{2}=\Gamma \backslash \Gamma_{1} .
$$

Γ_{1} is the part of Γ where the boundary condition is of Dirichlet type. We assume that $\sum_{i=1}^{N} b_{i} \nu_{i} \geqq 0$ on Γ_{2} where $\nu=\left(\nu_{1}, \cdots, \nu_{N}\right)$ is the outernormal vector to Γ. Set

$$
V=\left\{u \in H^{1}(\Omega): u=0 \text { on } \Gamma_{1}\right\} .
$$

Let $\Psi(x)$ be a function belonging to $H^{1}(\Omega) \cap L^{1}(\Omega)$ such that $\Psi \leqq 0$ on Γ_{1}. We assume that

$$
\left\{u \in V: u \geqq \Psi \text { a.e., } j\left(\left.u\right|_{\Gamma}\right) \in L^{1}(\Gamma)\right\}
$$

is not empty, or equivalently $j\left(\left.\Psi^{+}\right|_{\Gamma}\right) \in L^{1}(\Gamma)$.
The norm of $L^{2}(\Omega)$ and $H^{1}(\Omega)$ are denoted by | | and || || respectively. The inner product of $L^{2}(\Omega)$ as well as the pairing between V and V^{*} are both denoted by (,). The norm of $L^{p}(\Omega)$ is denoted by $\left|\left.\right|_{p}\right.$.

The mapping A which is multivalued in general is defined as fol-

[^0]lows : $u \in D(A)$ and $A u \ni f$ if $f \in L^{2}(\Omega), \Psi \leqq u \in V, j\left(\left.u\right|_{\Gamma}\right) \in L^{1}(\Gamma)$ and
$$
a(u, v-u)+\int_{\Gamma} j\left(\left.v\right|_{\Gamma}\right) d \Gamma-\int_{\Gamma} j\left(\left.u\right|_{\Gamma}\right) d \Gamma \geqq(f, v-u)
$$
for every v such that $\Psi \leqq v \in V, j\left(\left.v\right|_{\Gamma}\right) \in L^{1}(\Gamma)$.
It is easily shown that A is maximal monotone in $L^{2}(\Omega)$, and $\overline{D(A)}$ $=\left\{u \in L^{2}(\Omega): u \geqq \Psi\right.$ a.e. $\}$.

For $\Psi \leqq u_{0} \in L^{2}(\Omega)$ and $f \in W^{1,1}\left(0, T ; L^{2}(\Omega)\right)$ set

$$
S_{f}(t) u_{0}=\lim _{n \rightarrow \infty} \prod_{i=1}^{n}\left[1+\frac{t}{n}\left(A-f\left(\frac{i}{n} t\right)\right)\right]^{-1} u_{0}
$$

(cf. M. G. Crandall-A. Pazy [3]).
Lemma 1. If $f, \hat{f} \in L^{2}(\Omega), f-\hat{f} \in L^{p}(\Omega), 1 \leqq p<\infty$, then for $\lambda>0$ $(1+\lambda A)^{-1} f-(1+\lambda A)^{-1} \hat{f} \in L^{p}(\Omega)$ and

$$
\left|(1+\lambda A)^{-1} f-(1+\lambda A)^{-1} \hat{f}\right|_{p} \leqq|f-\hat{f}|_{p}
$$

From Lemma 1 the following proposition readily follows.
Proposition 1. If $u_{0}, \hat{u}_{0} \in L^{2}(\Omega), u_{0}-\hat{u}_{0} \in L^{p}(\Omega), 1 \leqq p<\infty$, then $S_{f}(t) u_{0}-S_{f}(t) \hat{u}_{0} \in L^{p}(\Omega)$ and

$$
\left|S_{f}(t) u_{0}-S_{f}(t) \hat{u}_{0}\right|_{p} \leqq\left|u-\hat{u}_{0}\right|_{p} .
$$

Lemma 2. If $A u \ni f, A \hat{u} \ni \hat{f}, u-\hat{u} \in L^{p}(\Omega), 1<p<2$, then

$$
\begin{array}{ll}
\left(f-\hat{f},|u-\hat{u}|^{p-2}(u-\hat{u})\right)+|u-\hat{u}|_{p}^{p} & \text { if } N>2 \\
& \geqq \begin{cases}c_{p}|u-\hat{u}|_{p N /(N-2)}^{p} & \text { if } N=2 . \\
c_{p, q}|u-\hat{u}|_{q}^{p} \text { for any } q \in[2, \infty) & \end{cases}
\end{array}
$$

Using Lemma 2 and following the argument of L. Véron [5], pp. 175-176 we get

Proposition 2. Suppose $\Psi \leqq u_{0} \in L^{2}(\Omega), \Psi \leqq \hat{u}_{0} \in L^{2}(\Omega), u_{0}-\hat{u}_{0}$ $\in L^{p}(\Omega)$, then

$$
\begin{array}{ll}
\mid S_{f}(t) & u_{0}-S_{f}(t) \hat{u}_{0} \mid \\
& \leqq \begin{cases}c_{p}\left(1+t^{-N(p-1-2-1) / 2}\right)\left|u_{0}-\hat{u}_{0}\right|_{p} & \text { if } N>2 \\
c_{p, \sigma}\left(1+t^{-\sigma}\right)\left|u_{0}-\hat{u}_{0}\right|_{p} \text { for any } \sigma>p^{-1}-2^{-1} & \text { if } N=2 .\end{cases}
\end{array}
$$

From Propositions 1 and 2 we get the following result.
Theorem 1. For $f \in W^{1,1}\left(0, T ; L^{2}(\Omega)\right)$ the mapping $S_{f}(t)$ can be extended to a mapping from $\left\{u \in L^{p}(\Omega): u \geqq \Psi\right.$ a.e. $\}$ to $L^{2}(\Omega)$ for any $1 \leqq p$ <2. For any u_{0} such that $\Psi \leqq u_{0} \in L^{p}(\Omega), 1 \leqq p<2, S_{f}(t) u_{0} \rightarrow u_{0}$ in $L^{p}\left(\Omega_{R}\right)$ as $t \rightarrow 0$ for any $R>0$ where $\Omega_{R}=\Omega \cap\{x:|x|<R\}$.

Let \tilde{A} be the operator defined as A with j replaced by the function \tilde{j} such that $\tilde{j}(x, \cdot)=j(x, \cdot)=$ the indicator function of $\{0\}$ for $x \in \Gamma_{1}$ and $\tilde{j}(x, \cdot) \equiv 0$ for $x \in \Gamma_{2}$. Namely the boundary condition on Γ_{2} is replaced by that of Neumann type by this replacement.

Let L and \mathcal{L} be the linear operators on V to V^{*} and $H^{1}(\Omega)$ to V^{*} defined by

$$
\begin{aligned}
& (L u, v)=a(u, v), u, v \in V \\
& (\mathcal{L} u, v)=a(u, v), u \in H^{1}(\Omega), v \in V
\end{aligned}
$$

respectively. Let w be the solution of the equation

$$
w^{\prime}+\tilde{A} w \ni f^{+}, w(0)=u_{0}^{+}
$$

and v be the solution of the linear equation in V^{*}

$$
v^{\prime}+L v=\mathcal{L} \Psi+f^{+}, v(0)=u_{0}^{+} .
$$

Then it is shown that

$$
\Psi \leqq S_{f}(\cdot) u_{0} \leqq(w-v)^{+}+v
$$

Hence we get
Theorem 2. For $\Psi \leqq u_{0} \in L^{p}(\Omega), 1 \leqq p \leqq 2$, we have for $0<t \leqq T$

$$
\left|S_{f}(t) u_{0}\right| \leqq C\left(t^{N(2-1-p-1) / 2}\left|u_{0}^{+}\right|_{p}+t^{1 / 2}\|\Psi\|\right)+|\Psi|+\int_{0}^{t}\left|f^{+}(s)\right| d s
$$

The right derivative of $S_{f}(t) u_{0}$ exists in ($0, T$]. Arguing as in [4] we get

Theorem 3. If in addition to the assumption of Theorem $2 f$ belongs to $W^{1,1}\left(0, T ; L^{r}(\Omega)\right), r \geqq 2$, then the right derivative $D^{+} S_{f}(t) u_{0}$ which exists in the strong topology of $L^{2}(\Omega)$ belongs to $L^{r}(\Omega)$, and

$$
\begin{aligned}
\left|D^{+} S_{f}(t) u_{0}\right|_{r} \leqq C\{ & t^{-r-1}\left|u_{0}^{+}\right|_{p}+t^{-\alpha-1}\left(|\Psi|+t^{1 / 2}\|\Psi\|+|v|+t\left|A^{0} v\right|\right) \\
& +t^{-\alpha-1}\left(\int_{0}^{t}|f(s)| d s+\int_{0}^{t} s\left|f^{\prime}(s)\right| d s\right) \\
& \left.+\int_{0}^{t}\left|f^{\prime}(s)\right|_{r} d s\right\}
\end{aligned}
$$

where $\gamma=N\left(p^{-1}-r^{-1}\right) / 2, \alpha=N\left(2^{-1}-r^{-1}\right) / 2, v$ is an arbitrary element of $D(A)$ and A^{0} is the minimal cross-section of A.

In what follows we assume that either Ω is bounded or there exists a function $\tilde{\Psi} \in L^{1}(\Omega)$ such that $\alpha(\Psi, v) \leqq(\tilde{\Psi}, v)$ for any v satisfying $0 \leqq v$ $\in V \cap L^{\infty}(\Omega)$. The latter condition is satisfied if $\Psi \in W^{2,1}(\Omega), \mathcal{A} \Psi \in L^{1}(\Omega)$, $\partial \Psi / \partial n \leqq 0$ on Γ_{2}, where \mathcal{A} is the linear differential operator associated with the bilinear form $a(u, v)$ and $\partial / \partial n$ is the conormal derivative with respect to A.

Theorem 4. Under the assumptions stated above the mapping A_{p} defined by
$G\left(A_{p}\right)=$ the closure of $G(A) \cap\left(L^{p}(\Omega) \times L^{p}(\Omega)\right)$ in $L^{p}(\Omega) \times L^{p}(\Omega)$ where $G(A)$ denotes the graph of A is m-accretive in $L^{p}(\Omega)$ for $1 \leqq p<2$, and

$$
D\left(\overline{A_{p}}\right)=\left\{u \in L^{p}(\Omega): u \geqq \Psi \text { a.e. }\right\} .
$$

Under the assumptions of Theorem 4 if $\Psi \leqq u_{0} \in L^{p}(\Omega)$ and f $\in W^{1,1}\left(0, T ; L^{p}(\Omega)\right)$, then $S_{f}(t) u_{0} \in L^{p}(\Omega)$ and $S_{f}(t) u_{0} \rightarrow u_{0}$ in $L^{p}(\Omega)$ as $t \rightarrow 0$.

References

[1] F. E. Browder: On the spectral theory of elliptic differential operators I. Math. Ann., 142, 22-130 (1961).
[2] B. D. Calvert and C. P. Gupta: Nonlinear elliptic boundary value problems in L^{p}-spaces and sums of ranges of accretive operators. Nonlinear Anal., 2, 1-26 (1978).
[3] M. G. Crandall and A. Pazy: Nonlinear evolution equations in Banach spaces. Israel J. Math., 11, 56-94 (1972).
[4] H. Tanabe: Differentiability of solutions of some unilateral problem of parabolic type. J. Math. Soc. Japan, 33, 367-404 (1981).
[5] L. Véron: Effets régularisants de semi-groupes non linéaires dans des espaces de Banach. Ann. Faculté Sci. Toulouse, 1, 171-200 (1977).

[^0]: *) This research was partially supported by Grant-in-Aid for Scientific Research 56540085 and partially by the Takeda Science Foundation.

